
Lecture 4: Pipage Rounding

Consider the maximum coverage problem: given a universe U and a collection of subsets of U :
{S1, . . . , Sm}, choose a collection of k sets so as to maximize the cardinality of their union.

One can consider the following greedy algorithm: pick the set which covers the maximum num-
ber of uncovered elements iteratively till you pick k sets. This algorithm achieves an a (1−(1−1/k)k)
approximation factor.

We now give another algorithm which achieves a better factor in certain cases. Consider the
following linear program for the problem.

max
∑
i∈U

zi (x, z ≥ 0) (1)

subject to zi ≤ 1 ∀i ∈ U (2)

zi ≤
∑
j:i∈Sj

xj ∀i ∈ U (3)

m∑
j=1

xj = k (4)

Note that the above objective can be rewritten as max{
∑

i∈U min(1,
∑

j:i∈Sj
xj) :

∑
j xj = k}.

Denote {x ∈ [0, 1]m :
∑

j xj = k} as P and the function L(x) :=
∑

i∈U min(1,
∑

j:i∈Sj
xj). Then

from the above discussion (1) is equivalent to

max {L(x) : x ∈ P} (5)

which can be solved in polytime and upper bounds the optimum.

Now consider the following non-linear function.

F (x) :=
∑
i∈U

(
1−Πj:i∈Sj (1− xj)

)
Observe that whenever x ∈ {0, 1}m, F (x) equals the value of the algorithm which picks sets with
xj = 1. Thus, the following non-linear program

max {F (x) : x ∈ P} (6)

is also an upper bound on opt. It might seem pointless going to this non-linear program since
we don’t know how to solve this in polynomial time (even when the domain is [0, 1]m). But what
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makes this interesting is that (6) actually has an integral optimum unlike (1). More precisely, given
any fractional solution to (6), there is a rounding algorithm which returns an integral solution of
at least the value of the fractional solution. This is the so called pipage rounding algorithm which
we will describe below.

To summarize, we know how to solve (5) but the solution is not integral. We don’t know
how to solve (6), but we know there is an integral optimum. To complete the picture, if we show
F (x) ≥ ρ · L(x) for all x ∈ P for some ρ ≤ 1, then we have an ρ-approximation. To see this, solve
(5) to get x∗. Run the pipage rounding algorithm to get xint. We know that

alg = F (xint) ≥ F (x∗) ≥ ρ · L(x∗) ≥ ρ · opt

Before we describe the pipage rounding algorithm for (6), let us show that ρ =
(
1− (1− 1/f)f

)
suffices, where f is the maximum number of sets an element of U occurs in. So for the k-vertex
coverage problem, we get a 3/4-approximation.

Claim 1. For all x ∈ P, F (x) ≥ ρ · L(x).

Proof. It suffices to show 1−Πj:i∈Sj (1−xj) ≥ ρ ·min(1,
∑

j:i∈Sj
xj) for any i ∈ U . By the AM-GM

inequality, the LHS is at least 1−(1−
P

j:i∈Sj
xj

f )f . If
∑

j:i∈Sj
xj ≥ 1, then this is at least 1−(1− 1

f )f ;
therefore, we may assume

∑
j:i∈Sj

xj < 1.
Since the function g(t) := 1− (1− t

f )f is concave in t ∈ [0, 1], we have for t < 1, g(t) ≥
(1− t)g(0) + tg(1) = t(1− (1− 1

f )f ). Thus,

1−Πj:i∈Sj (1− xj) ≥ 1−

(
1−

∑
j:i∈Sj

xj

f

)f
≥

 ∑
j:i∈Sj

xj

(1−
(

1− 1
f

)f)

Pipage Rounding

The setting where pipage rounding applies is more general than the one described above. Abstractly,
suppose we want to maximize a function on m variables in {0, 1}m intersected with a polytope.

max{F (x) : x ∈ P ∩ {0, 1}m }

Now suppose for every non-integral x ∈ P, there exists a vector vx and αx, βx > 0 such that both
x + αxvx and x − βxvx have strictly larger number of integral coordinates. Furthermore, for all
x ∈ P, also suppose the function F () is convex in the direction vx. That is, the one-dimensional
function gx() defined as

gx(t) := F (x+ tvx)

is a convex function. Then, the following abstract rounding procedure takes a feasible x ∈ P, and
returns an {0, 1}m-vector xint ∈ P with F (xint) ≥ F (x).

Procedure Pipage

Repeat till x is a {0, 1}-vector: if F (x+αxvx) ≥ F (x), x = x+αxvx; else x = x−βxvx.
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Since F () is convex in direction of vx, we know that F (x) ≤ max (F (x+ αxvx), F (x− βxvx)) (Be-
cause gx(0) ≤ βx

αx+βx
gx(α) + αx

αx+βx
gx(−βx)). So the value of F (x) never goes down. Furthermore,

since the number of integral coordinates increases, the above procedure terminates in at most m
steps.

Let us now move to concrete examples. To start with, let’s take the coverage problem described
above. Here, P := {x ∈ [0, 1]m :

∑m
j=1 xj = k}. Suppose x is a non-integral vector in P. Note that

there are at least two fractional coordinates. Let it be xp and xq. Our vector vx is then the vector
(ep− eq), where ep is the vector with 1 in the pth coordinate and 0 elsewhere. αx = min(1−xp, xq)
and βx = min(1− xq, xp). Note that x+ αxvx and x− βxvx are vectors in P with at least one less
fractional coordinate.

F (x) =
∑

i∈U
(
1−Πj:i∈Sj (1− xj)

)
. For any x ∈ P, and fractional coordinates xp and xq,

note that the function gx(t) is also a sum of functions of t; each function is either a constant (if
i /∈ Sp and i /∈ Sq), or a linear function (if i is in exactly one of Sp or Sq), or a quadratic in t
with a positive coefficient for t2 (if i ∈ Sp and i ∈ Sq). All of there are convex, and thus F ()
is convex in the direction of vx. Therefore pipage rounding is applicable and we thus, as claimed
before, given a fractional vector x ∈ P, we can get an integral vector xint ∈ P with F (xint) ≥ F (x).

Let us summarize how pipage rounding can be used to obtain approximation algorithms for max-
imization problems (maximization is nothing special, the minimization case goes through with
convexity replaced with concavity, etc). First we cast the problem as a problem of maximizing
max{F (x) : x ∈ P ∩ {0, 1}m}. We need three things for all to work.

1. For any (non-integral) x ∈ P, we need a vector v and α, β > 0 such that x+ αv or x− βv
have strictly more integral coordinates.

2. For all x, the function F () needs to be convex in the direction of v. More precisely, the
function gx(t) := F (x+ tv) needs to be convex.

3. Finally, we need a starting fractional x with a guarantee that F (x) ≥ ρ · opt.

One way to do so is to get a linear approximator for F . That is, a linear function L(x)
such that F (x) ≥ ρ · L(x) for all x ∈ P. Then the starting x is the solution of the linear
program max{L(x) : x ∈ P} (assuming P is a set of linear constraints). This was done
in the application above. Another way could be just find an approximate solution to the
non-linear program max{F (x) : x ∈ P}.

Remark 1. If pipage rounding is applicable, then note that P must be an integral polytope. Other-
wise, given a fractional vertex x ∈ P, one can never get the vector v and α, β > 0 such that x+αv
and x− βv both lie in P.

Remark 2. In fact, one doesn’t require the first condition very strongly. It suffices if one can show
x+ αv and x− βv “make progress” towards an integral solution. One possible measure of progress
if both x+ αv and x− βv lie on a face of P smaller dimension.
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Maximizing Monotone Submodular Functions over Matroid Constraints

Definitions. A set function f : 2U → Z≥0 is submodular if f(A)+f(B) ≥ f(A∪B)+f(A∩B) for
all A,B ⊆ U . It is monotone if for any pair of sets A ⊆ B, f(A) ≤ f(B). A set system M := (U, I)
form a matroid if it satisfies the following two conditions: a) if B ∈ I and A ⊆ B, then A ∈ I, and
b) for any two sets A,B ∈ I, with |A| < |B|, there exists an element i ∈ B such that A ∪ i ∈ I.
The sets in I are called independent sets.

Problem. Given a monotone submodular function f and a matroid M := (U, I), find S ∈ I which
maximizes f(S).

This abstract problem above captures a lot of problems. In fact, sometimes it is not that easy
to see that this is indeed the case. This is because the submodular function and the set system
may have to be designed carefully. The coverage problem described above falls in this class. A few
more will be covered in exercises.

Theorem 1 (Calinescu-Chekuri-Pál-Vondrák 2009). There is a randomized (1−1/e) approximation
algorithm to the problem of maximizing a monotone submodular function over a matroid constraint.

Matroid Polytope. Given a set S ∈ I, we can define the characteristic vector of S as the {0, 1}n
vector which has 1 in the coordinates corresponding to i ∈ S. The matroid polytope is defined as
the convex hull of all the characteristic vectors. This can be represented as follows. We need a
definition. Given a set S ⊆ U , the rank of S, rM (S), is the size of the largest independent subset
of S. The matroid polytope is defined as

P := {x ∈ [0, 1]n :
∑
i∈S

xi ≤ rM (S), ∀S ⊆ [n]}.

The polytope has the following property. Given x ∈ P, let L denote a set of maximally linearly
independent constraints which hold with equality. If x is not a basic feasible solution, we know
that dimension of the space spanned by L is strictly less than n. Then there exists i and j and
positive α and β such that the number of linearly independent tight constraints which hold with
equality with x+ α(ei − ej) and x− β(ei − ej) is strictly larger. This gives us the condition 1 for
pipage rounding.

Let me give a sketch of how to find ei, ej , α, β given x. Call a set S tight if
∑

i∈S xi = rM (S).
Now the rank itself is a submodular function (why?), and this implies that if A and B are tight
sets, so are their intersections and union (why?). Therefore, given i one can define the minimal
tight set containing i. As a result, unless x is integral, one can find i, j such that the minimal tight
set containing i coincides with the minimal tight set containing j. These are our i and j. Now
consider increasing i and decreasing j; we can keep doing this till a subset of this set becomes tight
and this leads to a new linearly independent equality constraint, or till xj = 0 in which case this
is added as the linearly independent constraint. Whatever the value at which one of these happen
gives α. The converse process gives β.

Submodular Function to Continuous Non-Linear Function. Given f , define F : [0, 1]n →
R≥0 as follows:
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F (x1, . . . , xn) :=
∑
S⊆[n]

(
f(S)

∏
i∈S

xi
∏
i/∈S

(1− xi)

)
Note the following

1. F (x1, . . . , xn) is the expected value of f(S) where S is obtained by sampling each element i
independently with probability xi. This can be used to obtain an estimate of F (x1, . . . , xn) –
we might come back to this later in the class.

2. Monotonicity of f implies ∂F
∂xi
≥ 0, for all i, for all x.

Submodularity implies ∂2F
∂xi∂xj

≤ 0 for i 6= j, for all x.

3. For any two coordinates i, j; let v = ei − ej .The function gx,i,j(t) = F (x + tv) is convex for
all x, i, j. This is because

d2gx,i,j(t)
dt2

=
∑
p,q

∂2F (x+ tv)
δxpδxq

vpvq =
δ2F (x+ tv)

δx2
i

− 2
δ2F (x+ tv)
δxiδxj

+
δ2F (x+ tv)

δx2
j

≥ 0

Point 3 above gives us the condition 2 required by pipage rounding above. Point 1 and 2 above
give the third condition for pipage rounding in form of the following theorem which we will not get
into.

Theorem 2 (Vondrák 08). If F satisfies point 2 above, and if ∇F can be estimated, and if given
weights wj the vector v ∈ P maximizing

∑
j vjwj can be found in polynomial time, then there is a

randomized (1− 1/e)-approximation to the problem of maximizing F (x) : x ∈ P.

Putting all together (and adding a bunch of details mainly arising out of the above theorem’s im-
plementation), we get the (1−1/e) approximation to maximizing a monotone submodular function
over a matroid constraint.
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