
CS 49/149: 21st Century Algorithms (Fall 2018): Lecture 14
Date: 30th October, 2018

Topic: Streaming. Estimating the second moment – two algorithms
Scribe: Chao Chen

Disclaimer: These notes have not gone through scrutiny and in all probability contain errors. Please email
errors to chao.chen.gr@dartmouth.edu.

1 Recap

1.1 Frequency Moment Estimation

Think of we have a really large array A[1...n] coming in as a stream. Once an element leaves the
stream, it is gone. Elements of the array are selected from the set ranging from 1 to m. Thus,
A[i]∈{1, 2, ..., m}. And fj is the number of occurrences of j in the stream for j∈{1, 2, ..., m}.
We want to estimate Kth moment:

Fk =
m∑
j=1

fkj

1.2 Estimation Algorithm

We want to develop an algorithm which returns a random variable Z such that

• Unbiased:
E(Z) = ”what we want”

• Error:
Additive Error: Pr[|Z − E(Z)| ≥ ε] ≤ δ (1)

Multiplicative Error: Pr[Z /∈ E(Z)(1 + ε)] ≤ δ (2)

From last class, we know if we want (1), we need Var(Z) 1
ε2
ln 1

δ samples. If we want (2), we need
Var(Z)
E(Z)2

1
ε2
ln 1

δ ≤
E(Z2)
E(Z)2

1
ε2
ln 1

δ samples.

2 Estimate F2

2.1 Problem

We want to estimate F2 =
∑m

j=1 f
2
j under the assumption that n ≈ m. Consider this two cases:

1. The elements have approximate equal frequency, i.e. for each j, fj ≈ n
m :

F2 = m · ( n
m
)2 =

n2

m
≈ n

2. Some elements have large frequency while others are small, i.e for some j, fj is really large
(we call this a ”surprise factor”), F2 will be really large.
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2.2 Algorithm 1 – Try 1

TRY 1

• Sample a j∈{1, 2, ..., m} u.a.r

• Count/Evaluate fj

• return Z = mf2j

Analysis: We need to evaluate the bound of the number of samples Try1 need. Remember that it’s
bound by E(Z2)

E(Z)2
1
ε2
ln 1

δ .
Calculate E(Z):

E(Z) =
m∑
j=1

Pr[j is sampled] ·mf2j

=
m∑
j=1

1

m
·mf2j

=
m∑
j=1

f2j

Calculate E(Z2):

E(Z2) =
m∑
j=1

Pr[j is sampled] · (mf2j )2

=

m∑
j=1

1

m
· (mf2j )2

= m
m∑
j=1

f4j

Consider two cases:

• For each j, j = n
m :

E(Z2)

E(Z)2
=
m

∑m
j=1 f

4
j

(
∑m

j=1 f
2
j )

2
=

m( nm)4m

(( nm)2m)2
= 1

This is good, since the bound of the number of samples is 1
ε2
ln 1

δ .

• f1 = n and for all j∈{2, ..., m}, fj = 0:

E(Z2)

E(Z)2
=
mn4

n4
= m

This is not good, since the bound of number of samples is m 1
ε2
ln 1

δ . If m is large, it’s going
to be large.
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2.3 Algorithm 1 – Try 2

TRY 2

• Sample a j∈{1, 2, ..., m} ∝ fj i.e. fjn (suppose we know fj
n )

• Count/Evaluate fj

• return Z = nfj

Analysis: Again, we need to evaluate the bound of the number of samples Try2 need.
Calculate E(Z):

E(Z) =
m∑
j=1

Pr[j is sampled] · nfj

=

m∑
j=1

fj
n
· nfj

=

m∑
j=1

f2j

Calculate E(Z2):

E(Z2) =
m∑
j=1

Pr[j is sampled] · (nfj)2

=

m∑
j=1

fj
n
· (nfj)2

= n
m∑
j=1

f3j

Consider four cases:

• For each j, j = n
m :

E(Z2)

E(Z)2
=

n
∑m

j=1 f
3
j

(
∑m

j=1 f
2
j )

2
=

n( nm)3m

(( nm)2m)2
= 1

This is good, since the bound of the number of samples is 1
ε2
ln 1

δ .

• f1 = n and for all j∈{2, ..., m}, fj = 0:

E(Z2)

E(Z)2
=

n
∑m

j=1 f
3
j

(
∑m

j=1 f
2
j )

2
=

n(n)3

((n)2)2
= 1

This is good as well.
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• f1 = n
2 , for all j∈{2, ..., n/2}, fj = 1 and for others fj = 0:

E(Z2)

E(Z)2
=

n
∑m

j=1 f
3
j

(
∑m

j=1 f
2
j )

2
=

n4

8 + n2

2

(n
2

4 + n
2 )

2
≈ constant

This is good as well.

• f1 =
√
n, for other j, some fj = 1 and some fj = 0 s.t.

∑m
j=1 fj = n:

E(Z2)

E(Z)2
=

n
∑m

j=1 f
3
j

(
∑m

j=1 f
2
j )

2
≈ n

5
2

n2
≈
√
n

This is not that good, but it’s good enough, since the bound of number of samples is approx-
imately

√
n 1
ε2
ln 1

δ .

Try 2 is an acceptable good approach, but the problem is that we don’t know fj
n . So Try 3 will

propose an approach that give us
√
n bounds without the knowledge of fjn .

2.4 Algorithm 1 – Try 3

TRY 3

• Sample a coordinate r∈ A[1...n] u.a.r

• j = A[r]

• nj ≡ # of occurrence of j in A[r...n]

• return Z = (2nj − 1)n

Analysis:
Calculate E(nj |j):
Given that we sampled j, we are equally likely to sample any of the fj occuerence.

E(nj |j) =
fj + (fj − 1) + (fj − 2) + ...+ 1

fj

=
fj(fj + 1)

2fj

=
fj + 1

2

Calculate E(Z|j):

E(Z|j) = (2E(nj |j)− 1)n

= nfj
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Calculate E(Z):

E(Z) =
m∑
j=1

Pr[sample j] · E(Z|j)

=
m∑
j=1

fj
n
· nfj

=

m∑
j=1

f2j

Calculate E(Z2):
Given that we sampled j, Z ≤ 2nfj .

E(Z2) =
m∑
j=1

Pr[sample j] · E(Z2|j)

≤
m∑
j=1

fj
n
· (2nfj)2

= 4n

m∑
j=1

f3j

≤ 4
√
n(

m∑
j=1

f2j )
2

= 4
√
nE(Z)2

So E(Z2)
E(Z)2 ≤ 4

√
n, this is good, it give us the bound of the number of samples to be 4

√
n 1
ε2
ln 1

δ

2.5 Algorithm 2

ALGORITHM 2

• C = 0

• Sample a g: [m]−→ {1, -1} from a 4-wise independent hash family.

• When element a arrives:
C = C + g(a)

• return Z = C2

Analysis:
From the algorithm, we know that

C =
∑
a

fa · g(a)
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Calculate E(Z):

E(Z) = E(C2)

= E[
m∑
a=1

fa · g(a))2]

= E[
m∑
a=1

f2a + (
∑
a6=b

fafbg(a)g(b)]

= F2 +
∑
a6=b

fafbE[g(a)g(b)]

Since g is from 4-wise independent hash family, the second term is 0.

= F2

Calculate E(Z2):

E(Z2) = E(C4)

= E[
m∑
a=1

(fa · g(a))4]

= E[
m∑
a=1

f4a +
∑
a6=b

f2af
2
b +

∑
a,b,c,d

fafbfcfdg(a)g(b)g(c)g(d)]

=
m∑
a=1

f4a +
∑
a6=b

f2af
2
b +

∑
a,b,c,d

fafbfcfdE[g(a)g(b)g(c)g(d)]

Since g is from 4-wise independent hash family, the third term is 0.

=
m∑
a=1

f4a +
∑
a6=b

f2af
2
b

= (
m∑
a=1

f2j )
2

= F 2
2

So E(Z2)
E(Z)2 = 1, this is good, since it give us the bound of the number of samples to be 1

ε2
ln 1

δ b

Question: Can algorithm 2 be modified to estimate F3?
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