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1 Counting Probabilistically

If we wanted to count the number of items in a stream (i.e. F0) of n items, we would need
c = log2 n bits to store it exactly. If we allow approximation to the count, we can count c
instead to keep track of the number of bits that make up n. Then, we would need a total of
O(log c) = O(log log n) bits. However, we cannot track c deterministically! Thus, we need a
way to approximate c without using too much space.

1.1 Morris Counter

Morris Counter is one such way of counting c probabilistically. The algorithm is as follows:

1. Set c = 0

2. When an item arrives, increment c with probability 2−c

3. Return z = 2c − 1

Note that the mechanism to increment c can be implemented with O(log c) space plus a
random bit (used as a coin), since we can toss the coin c times and increment c only when
all of them land head.

1.1.1 Analysis

Let z(n) be the state of the counter after n items arrived. Deterministically,

z(0) = 0 and z(1) = 1 (1)

Since we’re incrementing c with a coin toss,

[z(n+ 1)|c(n) = j] =

{
2j with probability1− 1

2j

2j+1 with probability 1
2j

Therefore, E[z(n+ 1)|c(n) = j] = 2j · (1− 1/2j) + 2j+1 · (1/2j) = 2j + 1 and

E[z(n+ 1)] =
∑
j

P [c(n) = j]E[z(n+ 1)|c(n) = j]

= P [c(n) = j](2j + 1)

= 1 + E[2c(n)]

= 1 + E[z(n)]

(2)
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Then, iterating over the values of n,

E[z(n)] = 1 + E[z(n− 1)]

= 1 + (1 + E[z(n− 2)])

· · ·
= n− 1 + E[z(1)]

= n (∵ (1))

(3)

Therefore, the counter is an unbiased estimator of n! Similarly,

E[z(n+ 1)2] =
∑
j

P [c(n) = j]E[z(n+ 1)2|c(n) = j]

= P [c(n) = j](22(j+1)(1/2j) + 22j(1− 1/2j))

= P [c(n) = j](22j − 2j + 2j+2)

= P [c(n) = j](22j + 3 · 2j)

= E[22c(n)] + 3E[2c(n)]

= E[z(n)2] + 3n

(4)

Then, by iterating, we get

E[z(n)2] = 3(n− 1) + E[z(n− 1)2]

= 3(n− 1) + 3(n− 2) + E[z(n− 2)2]

= · · ·
= 3(1 + 2 + · · ·+ (n− 1)) + E[z(0)2]

= 3n(n− 1)/2 + 1

(5)

By Chebyshev’s inequality, we can get the multiplicative error bound as follows:

P [|z(n)/n| > ε] ≤ V ar[z(n)]

ε2E[z(n)]2

≤ E[z(n)2]

ε2E[z(n)]2

=
3n(n− 1)/2 + 1

ε2n2

= O(1/ε2)

(6)

Question. Can we improve the error bound (sub-quadratic in ε−1)? How much will
keeping around multiple counters of c help?

2 Counting Distinct Elements

Suppose we want to count d = number of distinct items from a stream of m elements where
d >> 1. The idea here is that we can use the maximum number of leading zeros (x) to
approximate the cardinality (≈ 2x).
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Algorithm

1. Let L = dlog2me, and create an array of counters z[0 : L].

2. Randomly pick h : [m]− > [N ] from Pairwise Independent hash family, where N =
2x − 1 for some x >> 1.

3. When an item a ∈ 1, . . . ,m arrives, evaluate posa = number of trailing 0’s in the binary
representation of h(a) (i.e. largest j such that 2j|h(a)).

4. Then, z[posa]+ = 1

5. After the stream has passed, return d̂ = 2k, where k is the largest number with z[k] > 0.

Properties

1. Let Xa,j = 1 if 2j is the largest power of 2 that divides h(a), else Xa,j = 0. Then,
P [Xa,j] = 1] = 1/2j+1, since h(a) would need to have 1000 · · · 0 (j 0’s) as the last j+ 1
digits in its binary representation. Note that this is generally not true if N is small.

2. Let Yj =
∑

a:distinctXa,j (i.e. the number of distinct elements that increment counter
j). Then, E[Yj] = d/2j+1 by linearity of expectation. This means that Yj · 2j+1 is an
unbiased of estimator of d ∀j! However, this does not mean that Yj = z[j] in general.
In fact, since z[j] can be incremented by duplicate items, Yj ≤ z[j] ∀j.

3. Yj = 0 iff z[j] = 0, since you can’t have either of the values being greater than 0
without at least 1 (distinct) element incrementing them.

4. V ar[Yj] ≤ E[Yj] ∀j, since the variation of [sum of pairwise independent indicator
variables] (in this case, Yj) is always less than or equal to the expected value of the
sum (this is true in general).

With these properties, we can bound the error for d̂:

Theorem. With probability 5/8, d/16 ≤ d̂ ≤ 16d.
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Proof. Let l be integer with 2l < d ≤ 2l+1 and c some arbitrary constant. Then,

P [∃j ≥ l + c : z[j] > 0] ≤
∑
j≥l+c

P [z[j] > 0](∵ union bound)

=
∑
j≥l+c

P [Yj ≥ 1](∵ property 3)

≤
∑
j≥l+c

E[Yj](∵ Markov’s Inequality)

=
∑
j≥l+c

d/2j+1

≤
∑
j≥l+c

2l+1/2j+1(∵ d ≤ 2l+1)

= 1/2c
∑
j≥l+c

1/2j−(l+c)

≤ 1/2c−1

(7)

Thus, P [Ej ≥ l + 4 : z[j] > 0] ≤ 1/8 (we simply plugged in c = 4 to the above inequality).
Hence, with probability at least 7/8, d̂ = 2k ≤ 2l+4 = 16d. This satisfies the right side of the
theorem’s inequality. Similarly,

P [z[l − c] = 0] = P [Yl−c = 0]

≤ P [|Yl−c − E[Yl−c]| ≥ E[Yl−c]]

≤ V ar[Yl−c]/E[Yl−c]
2(∵ Chebyshev)

≤ E[Yl−c]/E[Yl−c]
2 = 1/E[Yl−c]

= 2l−c+1/d

< 2l−c+1/2l(∵ d > 2l from our definition of l)

= 1/2c−1

(8)

Then, plugging in c = 3 to the above inequality gives us P [z[l − 3] = 0] ≤ 1/4. However,
z[l − 3] = 0 means k < l − 3, since k is supposed to be the biggest number that has
nonempty slot in z. Thus, the negation of the inequality asserts that with probability at
least 3/4, k ≥ l − 3, i.e. d̂ = 2k ≥ 2l−3 = 2l+1/24 ≥ d/16. This satisfies the left side of the
theorem’s inequality. Thus, with probability 1−1/4−1/8 = 5/8 (these probabilities are the
probability that either of the theorem’s inequalities fail), d/16 ≤ d̂ ≤ 16d.

Question. Can we tighten the bound on d̂ by keeping around multiple instances of z?
If not, how else could we improve the bound?
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