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1 Counting Probabilistically

If we wanted to count the number of items in a stream (i.e. Fp) of n items, we would need
¢ = log, n bits to store it exactly. If we allow approximation to the count, we can count c
instead to keep track of the number of bits that make up n. Then, we would need a total of
O(log c) = O(loglogn) bits. However, we cannot track ¢ deterministically! Thus, we need a
way to approximate ¢ without using too much space.

1.1 Morris Counter

Morris Counter is one such way of counting ¢ probabilistically. The algorithm is as follows:
1. Set c=0
2. When an item arrives, increment ¢ with probability 27¢
3. Return z =2¢—1

Note that the mechanism to increment ¢ can be implemented with O(logc) space plus a
random bit (used as a coin), since we can toss the coin ¢ times and increment ¢ only when
all of them land head.

1.1.1 Analysis

Let z(n) be the state of the counter after n items arrived. Deterministically,
2(0) =0and z(1) =1 (1)
Since we're incrementing ¢ with a coin toss,

, 27 with probabilityl — o=
z(n+1)lc(n) =g = ) 27
= Jletn) = 3] {23“ with probability 5;

Therefore, E[z(n + 1)|c(n) = j] =27 - (1 —1/27) + 2771 . (1/27) = 29 + 1 and

Elz(n+1)] = Y Ple(n) = jJE[z(n + 1) e(n) = j]



Then, iterating over the values of n,

Elz(n)] =1+ E[z(n — 1)]
=1+ (1+E[z2(n—-2)))

=n—1+E[2(1)]
=n (. (1))

Therefore, the counter is an unbiased estimator of n! Similarly,

Elz(n+1)*) = ) Ple(n) = jIE[z(n + 1)*|e(n) = j]

= Ple(n) = j)(2°U+D(1/27) + 2% (1 — 1/2%))

= Plc(n) = j](2% — 27 4 2772) (4)
= Ple(n) = j](2% 43 - 29)

= E[2%M] 4 3E[2°™)]

=E[z(n)?] + 3n

E[z(n)’] = 3(n — 1) + E[z(n — 1)’]
=3(n—1)+3(n—2)+E[z(n —2)%

=3(1+2+4 -+ (n—1)) +E[2(0)%]
=3n(n—1)/2+1

By Chebyshev’s inequality, we can get the multiplicative error bound as follows:

Var[z(n)]
Pllz(n)/nl > € < Ggr oo

E[z(n)’]
— €E[(n)]? (6)
_ 3n(n—1)/2+1

=0(1/€)

Question. Can we improve the error bound (sub-quadratic in ¢7')? How much will
keeping around multiple counters of ¢ help?

2 Counting Distinct Elements

Suppose we want to count d = number of distinct items from a stream of m elements where
d >> 1. The idea here is that we can use the maximum number of leading zeros (z) to
approximate the cardinality (= 27).



Algorithm

1. Let L = [logy,m], and create an array of counters z[0 : L].

2. Randomly pick h : [m]— > [N] from Pairwise Independent hash family, where N =
2% — 1 for some x >> 1.

3. When an item a € 1,...,m arrives, evaluate pos, = number of trailing 0’s in the binary
representation of h(a) (i.e. largest j such that 27|h(a)).

4. Then, z[pos,)+ =1

5. After the stream has passed, return d = 2¥, where k is the largest number with z[k] > 0.

Properties

1. Let X,; = 1if 27 is the largest power of 2 that divides h(a), else X,; = 0. Then,
P[X, ] = 1] = 1/27%! since h(a) would need to have 1000---0 (5 0’s) as the last j 41
digits in its binary representation. Note that this is generally not true if N is small.

2. Let Yj = > sistinet Xaj (1. the number of distinct elements that increment counter
7). Then, E[Y;] = d/27*! by linearity of expectation. This means that Y; - 27t is an
unbiased of estimator of d Vj! However, this does not mean that Y; = z[j] in general.
In fact, since z[j] can be incremented by duplicate items, Y; < z[j] V7.

3. Y; = 0iff z[j] = 0, since you can’t have either of the values being greater than 0
without at least 1 (distinct) element incrementing them.

4. VarlY;] < E[Y;] Vj, since the variation of [sum of pairwise independent indicator

variables| (in this case, Y;) is always less than or equal to the expected value of the
sum (this is true in general).

With these properties, we can bound the error for d:

Theorem. With probability 5/8, d/16 < d < 16d.



Proof. Let [ be integer with 2! < d < 2*! and ¢ some arbitrary constant. Then,

PlEj>1l+c:z[j] >0] < Z Plz[7] > 0](". union bound)

j>l4-c

- Z P[Y; > 1](-. property 3)
j>l+c

< Z E[Y;](.- Markov’s Inequality)
j>l+e

_ Z d/2j+1 (7)
j>l4-c

< Z 21+1/2j+1<.'. d< 21+1)

j>l4c

— 1/20 Z 1/2j7(l+c)

j>l4-c
S 1/2671

Thus, P[Ej > 1+ 4 : z[j] > 0] < 1/8 (we simply plugged in ¢ = 4 to the above inequality).

Hence, with probability at least 7/8, d = 2F < 2174 = 16d. This satisfies the right side of the
theorem’s inequality. Similarly,

Pl[l =] = 0] = P[Y;_ = 0]
< PV — E[Y;- ]| = E[Y;-]]
< Var|Y,_.]/E[Y;_.J*(".- Chebyshev)

< E[V_JJ/E[Y,_o]* = 1/E[Y;_] (8)
— 2l—c+1/d

< 2t=et1 9l - d > 2! from our definition of 1)

=1/2¢"

Then, plugging in ¢ = 3 to the above inequality gives us P[z[l — 3] = 0] < 1/4. However,
z[l = 3] = 0 means k < [ — 3, since k is supposed to be the biggest number that has
nonempty slot in z. Thus, the negation of the inequality asserts that with probability at
least 3/4, k > 1—3, ie. d=2F> 23 =21 /24 > /16, This satisfies the left side of the
theorem’s inequality. Thus, with probability 1 —1/4 —1/8 = 5/8 (these probabilities are the
probability that either of the theorem’s inequalities fail), d/16 < d < 16d. O

Question. Can we tighten the bound on d by keeping around multiple instances of z7
If not, how else could we improve the bound?



