
CS 49/149: 21st Century Algorithms (Fall 2018): Lecture 2
Date: 18th September, 2018

Topic: Online Decision Making
Scribe: Kevin Tan

Disclaimer: These notes have not gone through scrutiny and in all probability contain errors. Please email
errors to kevin.w.tan.19@dartmouth.edu and/or deeparnab@dartmouth.edu.

1 Online Decision Making

In this setting we have m actions available to choose from. At each time step, we want to select a
distribution ~p over the set of actions. We define the loss function `i(t) as action i’s loss at a given
timestep t. Let `i(t) ∈ [-1,1]. If we sum up the losses across all the actions at any given time-step,
we get

algt = Exp[losst] =

m∑
i=1

pi(t) · `i(t)

If we sum up algt across all time-steps and applying the linearity of expectation, we get

ALG = Exp[lossA] =
T∑
t=1

algt =
T∑
t=1

m∑
i=1

pi(t) · `i(t)

We set our benchmark to be the best possible strategy in hindsight which is not allowed to
change over time. That is to say, we sum up the loss of each individual action and pick the action
that gives us the lowest loss.

OPT = minq

m∑
i=1

(qi ·
T∑
t=1

`i(t))

Remark on the optimum strategy: Optimum strategy ~q can be assumed to be a point distribu-
tion, i.e. qi = 1 for some i and qi = 0 all other i’s.

Why is this the case? Assume there are only two actions (m = 2) and
∑T

t=1 `1(t) = 100 and∑T
t=1 `2(t) = 200. The optimum strategy would be to put all the weights on the first asset since

the weights on each action cannot change over time. Putting any weight at all on the second asset
would make the strategy non-optimal. We can see the logic of putting all the weight on the action
that produce the smallest total loss over time continues to hold as we add more actions. Therefore
the optimum strategy must be a point distribution.

1

b
Question: If we change the benchmark to be the best possible strategy in hindsight that is allowed to
change over time, is there an upper bound to how much worse the expected loss can be?

MULTIPLICATIVE WEIGHT UPDATE (MWU)

• Initialize weights wi(t) for each action with wi(1) = 1 for all i from 1 to m.

• On days t = 1, . . . , T :

– We set
pi =

wi∑m
i=1wi(t)

=
wi
zt

– Then we receive ~l(t). We then set:

wi(t+ 1) = wi(t) · (1− η · `i(t))

where η is a parameter set to be less than equal to 1. Note that with this update
function, any weight will never be 0.

1.1 Kullback-Leibler divergence

How do we analyze ”distance” between two probability distributions? We can use the Kullback-
Leibler divergence (KL divergence). A KL divergence can be defined over two probability distri-
butions over the set of all actions. Define x and y as any two arbitrary probability distributions at
any time step with the constraint that xi ≥ 0, i ∈ m. We can define the ”distance” between the
distributions as:

D(x||y) =
m∑
i=1

xi · ln
xi
yi

where D(x||y) is defined only when yi > 0, ∀i ∈ m and 0 · ln0 = 0.
We will not go into the proof of the following statements but we know the following identities

to be true. We will be using them later in the analysis of the MWU algorithm.

D(x||y) ≥ 0 (1)
D(x||y) ≤ lnm (2)

1.2 Does D(q||p(t)) fall as t increases?

One test we can to do to check if MWU is working is to check if D(q||p(t)) decreases at each time
step. That is to say, we would like to see p(t) converging to q as more time passes. Before we begin

2

the analysis of the algorithms, the following are useful identities to remember:

z(t+ 1)− z(t) =
m∑
i=1

(wi(t)− wi(t))

=
m∑
i=1

((1− η`i(t) · wi(t)− wi(t))

= −η
m∑
i=1

`i(t) · wi(t)

= −η · z(t) ·
∑m

i=1wi(t)

z(t)
· `i(t)

= −η · z(t) ·
m∑
i=1

(pi(t) · `i(t))

= −η · z(t) · alg(t)

Therefore,

z(t+ 1) = z(t) · (1− η · alg(t)) (3)

Another inequality to keep in mind:

ln (1− x) ≥ −x− x2, (4)

if |x| ≤ 1

Now, let us calculate the change in ”distance” between any 2 successive time-steps:

D(q||p(t))−D(q||p(t+ 1))

=

m∑
i=1

qi · ln
qi
pi(t)

−
m∑
i=1

qi · ln
qi

pi(t+ 1)

=

m∑
i=1

qi · ln
pi(t+ 1)

pi(t)

=

m∑
i=1

qi · ln (
wi(t+ 1)

zi(t+ 1)
· zi(t)
wi(t)

)

=

m∑
i=1

qi · (ln
wi(t+ 1)

wi(t)
+ ln

z(t)

z(t+ 1)
)

= ln
z(t)

z(t+ 1)
·
m∑
i=1

qi +

m∑
i=1

qi · ln (1− η · `i(t))

Using (3) and because
∑m

i=1 qi = 1,

= ln
1

1− η · algt
+

m∑
i=1

qi · ln (1− η · `i(t))

3

We know that |η · `i(t)| < 1 because `i(t) ∈ [−1, 1] and η < 1. With that and using (4),

≥ η · algt +
m∑
i=1

(qi · (−η · `i(t)− η2 · `i(t)2))

= η · algt − η ·
m∑
i=1

qi · `i(t)− η2 ·
m∑
i=1

qi · `i(t)2

We note that
∑m

i=1 qi · `i(t) is the loss for our bench mark and we shall denote it as optt.∑m
i=1 qi · `i(t)2 denotes some additional error term which we shall denote as error(t). Therefore

we have:

D(q||p(t))−D(q||p(t+ 1)) ≥ η(algt − optt)− η2error(t)

Note the tension here. On one hand we want the LHS of the equation to be large as it means the
MWU is rapidly shrinking the ”distance” between the distributions at 2 successive time-steps. Yet
on the RHS, we do not want the gap between the algt and optt to be too big.

If we now apply the summation operator on both sides of the equation for all time periods
(note: on the LHS if we were to list out all the terms to do the summation over, we would find that
all the terms would cancel out except for the following terms):

D(q||Pinitial)−D(q||Pfinal) ≥ η · (ALG−OPT)− η2 ·
T∑
t=1

error(t)

Observe that the difference in distance between the initial distribution that MWU starts with
and the final distribution that MWU ends with is dependent on the difference between ALG and
OPT . However intuitively, the difference between ALG and OPT cannot be too big because the
distances of the distribution at the end has to be a positive number.

ALG−OPT ≤
D(q||Pinitial)−D(q||Pfinal)

η
+ η ·

T∑
t=1

m∑
i=1

qi · `i(t)2

Since `i(t) ≤ 1, this means `i(t)2 ≤ 1 as well. Since `i(t)2 ≤ 1, this means that
∑m

i=1 qi · `i(t)2 < 1
as well. Imposing (1) on D(q||Pfinal) and (2) on the D(q||Pinitial), we get:

ALG−OPT <
lnm

η
+ η · T (5)

Here again we have a tension. If there was no η · T term, then we would choose η to be infinite so
we can do as well as our benchmark distribution at the very end. However, the presence of η · T
also means that if we choose a larger η, there is the potential for our algorithm to perform more
poorly.

To more properly see how ALG − OPT must change as T changes, we define RegA(T) =
ALG−OPT

T . Algorithm A is defined to have vanishing regret if RegA(T)→ 0 as T →∞.

4

By (5):

RegMWU (T) ≤
lnm

η · T
+ η (6)

Setting the RHS terms to equate to each other:

lnm

η · T
= η

lnm

T
= η2

η =

√
lnm

T

Substituting η =
√

lnm
T back into (6), we will find that RegMWU ≤ 2 ·

√
lnm
T . From this, we can

see that MWU has vanishing regret.

Now let us find out about the average performance of the algorithm. Let ε = 2 ·
√

lnm
T , where

ε is a parameter chosen by us and is the average error we are willing to tolerate.

ε = 2 ·
√

lnm

T

ε2 =
4 lnm

T

T =
4 lnm

ε2

Theorem 1. Therefore, if we want the average performance of the algorithm to be within some ε
of the best hindsight action’s loss, we need to run MWU for T = O(lnm

ε2
) rounds with η = ε/2

b

Question: Suppose now our distribution over the actions do not sum up to 1 but the weights on each
action ∈ [−1, 1]. How does this change our analysis?

5

2 Application to Linear Classification

In the classic linear classification problem, we have a similar set up to the online decision making
problem. We have a set of training data in the form of T tuples (~a(t), b(t)). Let ~a(t) ∈ Rm and
b(t) ∈ −1, 1. Assume that all ai(t) ∈ [−1, 1],∀i, t. Assume there exists a hyper-plane that separates
all the positive and negative b(t)′s with a margin. Let this hyper-plane vector be denoted by ~q,
where ∀i, qi ≥ 0. We can see that in this problem set up, the coordinates of ~a are the actions in the
online decision making, and ~q is the same as the optimal strategy.

Now how do we define the loss function? Observe that by the margin assumption, for the
for all the positive b, qTa(t) ≥ γ and for all the negative b, qTa(t) < −γ, where γ is the size of
the margin. Now, suppose for a distribution vector ~p(t), if ~p(t)T~a(t) · b(t) < 0, we know that the
probability distribution vector has misclassified a point. Hence, we can define ~a(t) · b(t) = ~̀

i(t) as
our loss function.

algt = E[loss] =
m∑
i=1

pi(t) · li(t) = (
m∑
i=1

pi(t) · ai(t)) · b(t)

If we sum up all the losses over all the time steps, we get:

ALG = E[lossA] =
T∑
t=1

~p(t)T ~̀(t) =
T∑
t=1

~p(t)T~a(t) · b(t) (7)

Similarly, we have:

optt =

m∑
i=1

qi · `i(t) =
m∑
i=1

qi · ai(t) · bi(t) ≥ γ (8)

OPT =
T∑
t=1

optt ≥ γ · T (9)

LINEAR CLASSIFICATION (WINNOW ALGORITHM)

• Initialize weights wi(t) for each action with wi(1) = 1 for all i from 1 to m.

• On days t = 1, . . . , T :

– We set
pi =

wi∑m
i=1wi(t)

=
wi
zt

– Consider the hyper-plane ~p(t)T~a(t) · b(t):
∗ If ~p(t)T~a(t)·b(t) ≥ 0, then we know that everything has been classified correctly.

Maintain the probability vector.
∗ Else, we know that there was a misclassification. Hence, we need to update all

the weights at the timestep with the following algorithm:

wi(t) = wi(t) · (1 + η · `i(t))

6

We then go back to ”Consider the hyper-plane ~p(t)T~a(t) · b(t)”

Notice the update step looks different. Instead of multiplying wi(t) with (1− η) as per MWU,
we want to multiply it by (1+ η). This is because the larger `i(t) is, the more we want to upweight
it (because if it were negative, it meant we were making a mistake).

2.1 Analysis

If we were to follow the analysis in the previous section of the lecture, we would end up with:

ALG−OPT ≥ −(lnm
η

+ η · T)

We know that ALG > 0 because the algorithm is still running after time time T. Since we also
know (9), we can form the following inequality:

0− γ · T >ALG−OPT ≥ −(lnm
η

+ η · T)

γ · T ≤ lnm

η
+ η · T

T (γ − η) ≤ lnm

η

T ≤ lnm

η · (γ − η)
(10)

Now suppose I want to find the smallest possible T. That means I need lnm
η·(γ−η) to be as small as

possible. However, since m and γ is fixed, that means I can only change the parameter η. I need
to maximize η · (γ − η). Taking the first derivative of η · (γ − η) with respect to η:

γ − 2 · η = 0

η =
γ

2
(11)

Substituting (11) into (10), we find that T ≤ 4 lnm
γ2

. The final equation implies that T ≤ lnm
η·(γ−η) . We

therefore get the following theorem.

Theorem 2.

Assume that all ai(t) ∈ [−1, 1],∀i, t.
Assume bi ∈ {−1, 1}
Assume there exists a hyper-plane that separates all the positive and negative b(t)′s with a margin
γ and that this hyper-plane ~q has qi > 0 and

∑m
i=1 qi = 1.

If η = γ
2 , the Winnow algorithm needs less than 4 lnm

γ2
training examples before it is able to start

correctly classifying points.

2.2 Discussion of assumptions

Note that the assumption that ai(t) ∈ [−1, 1] and ||q(t)|| ≤ 1 are weaker conditions that the per-
ceptron algorithm’s assumptions of ||a(t)||2 ≤ 1 and ||q||2 ≤ 1. Hence the results of Theorem 2 can
also apply to the analysis of the perceptron algorithm.

7

	Online Decision Making
	Kullback-Leibler divergence
	Does D(q||p(t)) fall as t increases?

	Application to Linear Classification
	Analysis
	Discussion of assumptions

