CS 49/149: 21st Century Algorithms (Fall 2018): Lecture 5

Date: 13th September, 2018

Topic: Gradient Descent, Online Convex Optimization, Perceptron.

Scribe: Chongyang Bai

Disclaimer: These notes have not gone through scrutiny and in all probability contain errors. Please email errors to cy@cs.dartmouth.edu.

1 Gradient Descent in Convex Optimization

Convex Optimization can be described as follows:

where f(x) is a convex function, S is a convex set.

Let x_* be the optimal solution of Problem 1, then our goal is to get \hat{x} and a small ϵ , s.t.

$$f(\hat{x}) \le f(x_*) + \epsilon \tag{2}$$

Unconstrained Convex Optimization. When $S = \mathbb{R}^n$, Problem 1 becomes unconstrained convex optimization (UCO), the whole gradient descent algorithm is simply as follows.

UCO GRADIENT DESCENT

- $x_1 =$ "an arbitrary point".
- $x_{t+1} = x_t \eta_t \nabla f(x_t)$

Remark: η_t is the "step size" that can change according to time t. If f is not differentiable, ∇f can be replaced by a subgradient of f at x.

Projected Gradient Descent When $S \neq \mathbb{R}^n$ we need to "project" the updated x to S if $x \notin S$. Let the updated point be z, we replace z by the nearest point in S to z. The algorithm is as follows.

PROJECTED GRADIENT DESCENT

- $x_1 =$ "an arbitrary point"
- $z_{t+1} = x_t \eta_t \nabla f(x_t)$
- $x_{t+1} = \pi_s(z_{t+1}) := \arg\min_{p \in S} ||z_{t+1} p||_2$

Let's look at some examples of projections.

- 1. $S \equiv \text{unit ball} \equiv \{v : \sum_j v_j^2 \le 1\}, \pi_S(x) = \frac{x}{||x||^2}$
- 2. $S = [-1,1]^n$, for example: $n = 3, x = (\frac{1}{2},3,-1) \Rightarrow \pi_S(x) = (\frac{1}{2},1,-1)$. Basically, $\forall x_i, x_i \notin [-1,1]$, $\pi_S(x)_i = \underset{u \in [-1,1]}{\operatorname{argmin}} |x_i u|$.
- 3. $S = \{\vec{p} : p_i \ge 0 \text{ for } \forall i, \text{ and } \sum_i p_i = 1\}, \pi(x) = \frac{x}{\sum_i x} \text{ is not true in Euclidean distance, but is easy to compute.}$

[Comments] To Do!

- 1. Why choosing the closest point $\pi(x)$? We will show 2 good properties it holds and use them to do error analysis of gradient descent.
- 2. Projection may not be easy to compute.

Fact 1. $\forall v \notin S, u \in S, ||v - \pi_S(v)||_2 \le ||v - u||_2$ (by definition of projection)

Fact 2. $\forall u \in S, (v - \pi_S(v))^T (u - \pi_S(v)) \leq 0$

Proof of Fact 2: Denote $p = \pi_S(v)$, if Fact 2 is not correct, i.e., $\exists u \in S, (v-p)^T(u-p) > 0$, and let $q = p + \epsilon(u-p)$, we have

$$||q - v||_2^2$$
 = $||(p - v) + \epsilon(u - p)||_2^2$
= $||p - v||_2^2 + \epsilon^2||u - p||_2^2 - 2\epsilon(v - p)^T(u - p)$

when $\epsilon < \frac{2(v-p)^T(u-p)}{||u-p||_2^2}$, we get

$$\epsilon^{2}||u-p||_{2}^{2} - 2\epsilon(v-p)^{T}(u-p) < 0 \tag{3}$$

so $||q-v||_2^2 < ||p-v||_2^2$, but when ϵ is very small, q can be in S, this contradicts with Fact 1!

1.1 Error Analysis of Gradient Descent

If f is convex, according to definition of subgradient, for any y, we get

$$f(y) \ge f(x) + (y - x)^T \nabla f(x) \tag{4}$$

Let $y = x_*, x = x_t$, denote $err(t) := f(x_t) - f(x_*)$, we get

$$f(y) \ge f(x) + (y - x)^T \nabla f(x)$$

$$\Rightarrow (x_t - x_*)^T \nabla f(x_t) \ge f(x_t) - f(x_*) \ge 0$$
(5)

Remark: Equation 5 indicates that the angle between gradient direction $\nabla f(x_t)$ and optimal moving direction $x_* - x_t$ is acute.

Denote $D_t := ||x_t - x_*||_2^2$ to be the square of distance between point at time t and the optimal point. We put two useful equations here (cosine rules) for later use.

$$||u - v||_2^2 = ||u||_2^2 + ||v||_2^2 - 2u^t v$$
(6)

$$||u+v||_2^2 = ||u||_2^2 + ||v||_2^2 + 2u^t v$$
(7)

Besides, we give two reasonable assumptions.

Assumption 1. $||x_1 - x_*||_2 \le D$

Assumption 2. $||\nabla f(x)||_2 \le \rho$

Now let's jump into the case of unconstrained gradient descent

Unconstrained Gradient Descent

$$err(t) \leq (x_{t} - x_{*})^{T} \nabla f(x_{t})$$

$$= \frac{1}{\eta_{t}} (x_{t} - x_{*})^{T} (x_{t} - x_{t+1})$$

$$= \frac{1}{2\eta_{t}} (||x_{t} - x_{*}||_{2}^{2} + ||x_{t} - x_{t+1}||_{2}^{2} - ||x_{t+1} - x_{*}||_{2}^{2})$$

$$= \frac{1}{2\eta_{t}} (D_{t}^{2} - D_{t+1}^{2}) + \frac{\eta_{t}}{2} ||\nabla f(x_{t})||_{2}^{2}$$

$$\leq \frac{1}{2\eta_{t}} (D_{t}^{2} - D_{t+1}^{2}) + \frac{\eta_{t}}{2} \rho^{2}$$
(10)

where the first line is by Equation 5, the second line is by replacing $\nabla f(x_t)$ according to the gradient descent update rule, Equation 8 is by applying $x_t - x_*$ to u and $x_t - x_{t+1}$ to v in Equation 6, the last equality is by replacing $x_t - x_{t+1}$ according to gradient update rule, and the last line is by assumption 2.

Sum over t from 1 to T, we get

$$\begin{split} \sum_{t=1}^{T} err(t) &\leq \frac{1}{2\eta_t} (D_1^2 - D_{T+1}^2) + \frac{\eta_t}{2} \rho^2 T \\ &\leq \frac{1}{2\eta_t} D^2 + \frac{\eta_t}{2} \rho^2 T \\ \text{divided by } T \Rightarrow \frac{1}{T} \sum_{t=1}^{T} err(t) &\leq \frac{1}{2\eta_t T} D^2 + \frac{\eta_t}{2} \rho^2 \end{split} \tag{11}$$

Set $\eta_t = \eta = \frac{D}{\rho} \frac{1}{\sqrt{T}}$, RHS of Equation 11 reaches the min value of $\frac{D\rho}{\sqrt{T}}$. Since we want $\frac{D\rho}{\sqrt{T}} \leq \epsilon$, when $T = \frac{D^2\rho^2}{\epsilon^2}$, $\eta = \frac{D}{\rho} \frac{1}{\sqrt{T}} = \frac{\epsilon}{\rho^2}$, we finally get

$$\frac{1}{T} \sum_{t=1}^{T} f(x_t) \le f(x_*) + \epsilon \tag{12}$$

Finally, the algorithm can return

• $\hat{x} = \underset{t}{\operatorname{argmin}} f(x_t)$

$$\bullet \ \hat{x} = \frac{1}{T} \sum_{t=1}^{T} x_t$$

In both cases, we have $f(\hat{x}) \leq \frac{1}{T} \sum_{t=1}^{T} f(x_t) \leq f(x_*) + \epsilon$

Projected Gradient Descent We'll show how to get to Equation 9, and the rest analysis are eactly the same as Unconstrained case.

$$err(t) \leq (x_t - x_*)^T \nabla f(x_t)$$

$$= \frac{1}{\eta_t} (x_t - x_*)^T (x_t - z_{t+1})$$

$$= \frac{1}{2\eta_t} (||x_t - x_*||_2^2 + ||x_t - z_{t+1}||_2^2 - ||z_{t+1} - x_*||_2^2)$$
(13)

Ø

The reasons for the first two lines are the same as Unconstrained Gradient Descent. According to the algorithm, $x_t - z_{t+1} = \eta \nabla f(x_t)$. Since x_{t+1} is the projection of z_{t+1} , $||z_{t+1} - x_*|| \ge ||x_{t+1} - x_*|| = D_{t+1}$, so Equation 13 \le Equation 9.

Question: How to prove $||z_{t+1} - x_*||_2 \ge ||x_{t+1} - x_*||_2$?

proof:

$$||z_{t+1} - x_*||_2^2 = ||(z_{t+1} - x_{t+1}) - (x_* - x_{t+1})||_2^2$$

$$= ||z_{t+1} - x_{t+1}||_2^2 + ||x_* - x_{t+1}||_2^2 - 2(x_* - x_{t+1})^T (z_{t+1} - x_{t+1})$$

$$\geq ||x_{t+1} - x_*||_2^2$$

Due to Fact 2, $(x_* - x_{t+1})^T (z_{t+1} - x_{t+1}) \le 0$, so the last inequality holds.

1.2 Online Convex Optimization (OCO)

The setting is as follows.

- ullet Space: Convex set S
- At every time t, you play $x_t \in S$
- A convex loss function $f_t : \mathbb{R}^n \to \mathbb{R}$ is fed, so your loss when playing at time t is $f_t(x_t)$
- $||\nabla f_t(z)|| \le \rho, \forall z \in S, \forall t = 1, ..., T$

Since alg = $\sum_{t=1}^{T} f_t(x_t)$, opt = $\min_{S} \sum_{t=1}^{T} f_t(x)$. Denote $x_* = \arg\min_{S} \sum_{t=1}^{T} f_t(x)$. In the error analysis of gradient descent, replace f(x) by $f_t(x)$, everything still holds. Particularly, if $T = \frac{D^2 \rho^2}{\epsilon^2}$ and $\eta = \frac{\epsilon}{\rho^2}$,

$$REGRET = \frac{1}{T} \sum_{t=1}^{T} (f_t(x_t) - f_t(x_*)) \le \epsilon$$
(14)

Application: Linear Classification Suppose we have data $\{(a_1,b_1),(a_2,b_T),...,(a_t,b_T)\}$, where $a_t \in \mathbb{R}^n, b_t \in \{-1,1\}$. We promise that $\exists x_* \in \mathbb{R}^n, ||x_*||_2 = 1$, s.t. $\forall t, \frac{b_t(x_*^T a_t)}{||a_t||_2} \geq \gamma$. That is, the dataset is linear separable. At everytime t, we 'play' a hyperplane x_t in \mathbb{R}^n . we make a mistake $\Rightarrow \exists (a_t, b_t) \in \text{data, s.t. } \frac{b_t(x_t^T a_t)}{||a_t||} \leq 0.$ We want to update x_t to x_{t+1} . Define $f_t(z) = -\frac{b_t(z_t^T a_t)}{||a_t||_2}$, then we have

- $f_t(x_t) \geq 0$
- $f_t(x_*) < -\gamma$

We update x_t by projected gradient descent,

$$x_{t+1} = \pi_S(x_t - \eta \nabla f_t(x_t))$$

where $S \equiv \{v: \sum_j v_j^2 \leq 1\}$ is the unit ball. Since $||x_1 - x_*||_2^2 \leq ||x_1||_2^2 + ||x_*||_2^2 = 2$ and $||\nabla f_t(z)|| = 1$ $||\nabla(-\frac{b_t(z^Ta_t)}{||a_t||_2})||_2 = ||-\frac{b_ta_t}{||a_t||_2}||_2 = 1$, we have $\rho = 1$ and D = 2. According to projected gradient descent's error analysis, when $T = \frac{4}{\epsilon^2}$, $\eta = \epsilon$, we get Equation 14.

Since $f_t(x_t) \geq 0$ and $-f_t(x_*) \geq \gamma$, from Equation 14, we have $\gamma \leq \text{REGRET} \leq \epsilon$ after making $T = \frac{4}{\epsilon^2}$ classification mistakes. $\gamma \leq \epsilon \Rightarrow T \leq \frac{4}{\gamma^2}$, we get

Theorem 1. The algorithm above cannot bake more than $\frac{4}{\sqrt{2}}$ mistakes. (PERCEPTRON)

We showed that PERCEPTRON algorithm is an instantiate of online gradient descent.