CS 49/149: 21st Century Algorithms (Fall 2018): Lecture 5
Date: 13th September, 2018
Topic: Gradient Descent, Online Convex Optimization, Perceptron.
Scribe: Chongyang Bai
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors. Please email
errors to cy@cs.dartmouth.edu.

1 Gradient Descent in Convex Optimization
Convex Optimization can be described as follows:

min f(x)
s.t. res (1)
where f(x) is a convex function, S is a convex set.

Let x. be the optimal solution of Problem 1, then our goal is to get and a small ¢, s.t.

f(@) < flaa) + e (2)

Unconstrained Convex Optimization. When S = R"”, Problem 1 becomes unconstrained convex
optimization (UCO), the whole gradient descent algorithm is simply as follows.

UCO GRADIENT DESCENT

e 1 = "an arbitrary point” .

oz =z — 1V f(ay)

Remark: 1, is the "step size” that can change according to time t. If f is not differentiable, V f can be
replaced by a subgradient of f at x.

Projected Gradient Descent When S # R"we need to "project” the updated x to Sif x ¢ S. Let
the updated point be z, we replace z by the nearest point in S to z. The algorithm is as follows.

PROJECTED GRADIENT DESCENT

e z; = "an arbitrary point”

o 211 =xt — eV f(x)

o X111 = Me(2t41) = arg mingeg l|zt41 — pl|2

Let’s look at some examples of projections.

1. S=unitball ={v:}; v <1}, ms(x) = P

I

2. § = [-1,1]", for example: n = 3,z = (3,3,-1) = mg(z) = (3,1, —1). Basically, Vz;,z; ¢
[—1,1], mg(z); = argmin|z; — ul.
u€[—1,1]

3. S={p:p; > 0forVi,and) ,p; = 1}, 7(x) = Z‘”_z is not true in Euclidean distance, but is
easy to compute. '

[Comments] To Dot

1. Why choosing the closest point 7(z)? We will show 2 good properties it holds and use them
to do error analysis of gradient descent.

2. Projection may not be easy to compute.
Fact1l. Yo € S;u € S, ||v — ms(v)||2 < [|v — ul]2 (by definition of projection)

Fact2. Vu € S, (v —7m5(v))T (u — m5(v)) <0
Proof of Fact 2: Denote p = mg(v), if Fact 2 is not correct, i.e., Ju € S, (v — p)T (u — p) > 0, and let

q=p+ €(u—p), we have

la—2l3 =[l(p—0v)+eu—p)3
=[lp — ll3 + €|lu — plI3 — 2¢(v — p)" (u —p)

(v—p)T (u—p)

2
when € < we get
Tu—pl3 W€ 8

€llu = pl[3 — 2¢(v — p)" (u—p) <0 3)
so |lg — v||3 < ||p — v||3, but when € is very small, ¢ can be in S, this contradicts with Fact 1!

1.1 Error Analysis of Gradient Descent

If f is convex, according to definition of subgradient, for any y, we get
Fw) = f(@) + (y —)" V(=) @)
Lety = x4,z = x¢, denote err(t) := f(x) — f(z«),we get

F@)= f(z) + (y —)"V f(2)
= (= 2.) V(@) f(a) = flas) 2 0)

Remark: Equation 5 indicates that the angle between gradient direction V f(x;) and optimal moving
direction x, — x; is acute.

Denote D; := ||z; — .||3 to be the square of distance between point at time t and the optimal point.
We put two useful equations here (cosine rules) for later use.

=[5 = [[ull3 + [o][3 — 2u'v (6)
w43 = [[ull3 + [o][3 + 2u'v (7)
Besides, we give two reasonable assumptions.
Assumption 1. ||z; — z.|[2 < D
Assumption 2. ||V f(z)||2 <p
Now let’s jump into the case of unconstrained gradient descent
Unconstrained Gradient Descent

err(t)< (xy — :E*)TVf(l't)
1

= E(xt —)T (2 — T441)

— 211%(||xt — 2|5+ o — 2|3 — |z — 2. 13) ®
%n“% D) + 119 ())

<o (Dt Di1) + %f’2 o

where the first line is by Equation 5, the second line is by replacing V f(z:) according to the
gradient descent update rule, Equation 8 is by applying x; — . to v and x; — ;41 to v in Equation
6, the last equality is by replacing z; — ;41 according to gradient update rule, and the last line is
by assumption 2.

Sum over t from 1to T, we get

1
ZGW)< 2—(D2 Di) + gtpzT
t=1 it
D2 e P27
1 o 1 1
.. 2 t 2
divided by T' = T ; err(t)< oo T t5 (11)

Set n; ? 277 = %%, RHS of Equation 11 reaches the min value of \[/)ﬁ Since we want f < ¢, when
T = DE{’ = %iT = -z, we finally get
1 I
72 o) < flaa) +e (12)
t=1

Finally, the algorithm can return

e & = argminf(x)
t

L _ 1T
©T=F3 T

In both cases, we have f(2) < + 23:1 flxe) < flay) + €

Projected Gradient Descent We'll show how to get to Equation 9, and the rest analysis are eactly
the same as Unconstrained case.

err(t)< (zp —)TV f ()

1
= n*(xt - fC*)T(ﬂft — Zt41)
t
1
= Tm(”xt — 3|5 + ||z — 241115 — 2041 — 24][3) (13)

The reasons for the first two lines are the same as Unconstrained Gradient Descent. According to
the algorithm, z; — 2,41 = nV f(x¢). Since z441 is the projection of z¢y1, ||zt41 — || > ||zi41 —24]| =
Dy 1, so Equation 13 < Equation 9.

Question: How to prove ||zi41 — T«||2 > ||xt41 — x4]]2 ?

proof:

zee1 — 24l15= [| (2141 — T41) — (@4 — 2031)|[3
=|lzt41 — 2|3 + J2e — 2eg1] 3 — 2(2s — 2041) T (2141 — Te41)

> (|21 — 4[5

Due to Fact 2, (2, — 2441)7 (2041 — 2441) < 0, s0 the last inequality holds.

1.2 Online Convex Optimization (OCO)

The setting is as follows.
e Space: Convex set S
e Atevery time ¢, you play z; € S
e A convex loss function f; : R” — Ris fed, so your loss when playing at time ¢ is f;(z)

o ||Vfi(2)|| <p,VzeSvVt=1,..T

Since alg = Zthl fi(xt), opt = msin Zthl fi(z). Denote x, = argmin Zthl fi(z). In the error

€S
analysis of gradient descent, replace f(z) by fi(z), everything still holds. Particularly, if 7" = D:f ’

and n = p%,

T
REGRET = > (fila) — fi(z.)) < ¢ (14)

t=1

Application: Linear Classification Suppose we have data {(a1,b1), (a2, br), ..., (a, br)}, where
a; € R", by € {—1,1}. We promise that 3z, € R", ||z,|]2 = 1, s.t. V¢, bi(zy ar) > ~. That is, the

[lac][2
dataset is linear separable. At everytime t, we "play” a hyperplane z; inR". we make a mistake

<= J(ay, b;) € data, s.t. btﬁiﬁ” < 0. We want to update z¢ to x4 1.
Define f;(2) = — bt| fzig) , then we have
o fi(zy) >0
o ft(x*) S -

We update z; by projected gradient descent,

Tiy1 = ms(we — NV fi(2t))

where S = {v:)7, v7 < 1} is the unit ball. Since |[z1 — 2.[|5 < [[z1][5 + [|2.]|5 = 2 and ||V fi(2)|| =

HV(—bt(ZTat))Hg = || — 29 ||, = 1, we have p = 1 and D = 2. According to projected gradient

[laz]l2 llat]l2
descent’s error analysis, when 7" = ;%, 1 = ¢, we get Equation 14.

Since fi(z;) > 0 and — f;(x«) > ~, from Equation 14, we have v < REGRET < ¢ after making
T = ;% classification mistakes. v < e = T < 74—2, we get

Theorem 1. The algorithm above cannot bake more than % mistakes. (PERCEPTRON)

We showed that PERCEPTRON algorithm is an instantiate of online gradient descent.

	Gradient Descent in Convex Optimization
	Error Analysis of Gradient Descent
	Online Convex Optimization (OCO)

