
CS 49/149: 21st Century Algorithms (Fall 2018): Lecture 8
Date: 11th October, 2018

Topic: Stochastic Gradient Descent
Scribe: Zephyr Lucas

Disclaimer: These notes have not gone through scrutiny and in all probability contain errors. Please email
errors to deeparnab@dartmouth.edu.

1 Motivation

Consider the following typical convex optimization problem in Machine Learning:

min
x∈S

(f(x)) = min
x∈S

(
T∑
t=1

(fi(x))

)
(1)

1.1 Least Squares

Finding the line which best represents a set of input points in Rn. Given some set of T “data
points” at (each of which is an element of Rn), we want to find the x and b which minimizes:

T∑
t=1

(∣∣∣∣aTt x− b
∣∣∣∣
2

)
(2)

Note that each of the
(∣∣∣∣aTt x− b

∣∣∣∣2
2

)
in the sum are convex functions (because they are linear).

1.2 Support Vector Machine

Classification problem to find the hyper plane that best divides the data.

• Input: data in the form: {(at, bt)|at ∈ Rn, bt ∈ {−1, 1, }}

• Goal: Find a hyper plane that separates the points with bt positive and the points with bt
negative.

This problem we have already solved using MWU. But what happens if no plane exists? Well,
then we would like to minimize the number of mistakes. That is we find a hyper plane given by
x such that the number of ordered pairs (at, bt) such that bt 6= sign(at · x) is minimized. This is an
NP-problem, so most likely we can’t find an efficient solution. So instead we introduce a “Proxy”
which captures the properties we would like:

1.2.1 Proxy Problem

In a perfect world we want try to find a hyper plane x which minimizes:

T∑
t=1

(Π(t)) , Π(t) =

{
1 If bt 6= sign (at · x)
0 Otherwise

1

So instead we find a hyper plane x ∈ Rn which minimizes:

T∑
t=1

(max(0, 1− bt(at · x)))

This new function is convex (It is the convexification of the perfect goal) which is a nice property to
have, but it is still not perfect because as we scale x up, then this becomes uniformly zero around
the origin, and minimizing a constant is fairly uninteresting. So instead we minimize:

T∑
t=1

(max(0, 1− bt(at · x))) +
λ

2
||x||22

Which is still a convex function, so we can run gradient decent and our problem is solved? Not
quite.

1.2.2 Gradient Decent on the Support Vector Machine Problem

We have our function:

f(x) =
1

m

m∑
i=1

(fi(x)) ∇f(x) =
1

m

m∑
i=1

(∇fi(x))

But calculating this gradient is very computationally expensive. Is there any way we can approx-
imate this, and run gradient descent on the approximation? It turns out that gradient decent is
very robust, and therefore an approximate gradient is good enough.

2 Stochastic Gradient Descent

Like in regular (unbounded) gradient descent, we are trying to minimize some convex function.
There we approached the minimum by iterating with the rule:

xt+1 = xt − ηt∇f(xt) (3)

The high level idea of stochastic gradient descent is, instead of following the gradient we follow
an (randomized) estimate of the gradient.

STOCHASTIC GRADIENT DESCENT

• Assume there exists and estimator E : Rn → Rn (E is a randomized algorithm) with:

– E : z 7→ g(z) where g(z) is a random vector.

– The expectation: E (g(z)|z) is a sub-gradient of f . In particular, if f is differentiable,
then this should give∇f).

• Suppose f(x) = 1
m

∑m
i=1 (fi(x)). Then we can sample i ∈ {1, 2, ...m} uniformly at

random and set g(x) = ∇fi(x) as out estimator for this iteration.

2

• Do regular gradient descent but update with xt+1 = xt − ηtg(xt).

We need to see if this is a good estimator:

E [g(x)|x] =
m∑
i=1

(
1

m
∇fi(x)

)
Notice this is the gradient!! and g is much easier to calculate as you don’t need to evaluate the
whole sum each iteration.

2.1 Analysis (in the unconstrained case)

In normal gradient decent we have the following steps:

Proof.

err(t) ≤ (xt − x∗)
T∇f(xt)

≤ 1

η
(xt − x∗)

T (xt − xt+1)

≤ 1

2η

(
||xt − x∗||22 − ||xt+1 − x∗||22 + ||xt+1 − xt||22

)
≤ 1

2η

(
D2

t −D2
t+1

)
+
η

2
||∇f(xt)||22

∴
T∑
t=1

(err(t)) ≤ 1

2η
D2

1 +
η

2

T∑
t=1

(
||∇f(xt)||22

)

But if we are no longer using the gradient as our function that takes us from xt to xt+1, then
the first inequality is no longer true. Instead we find (regardless of our choice of g)

T∑
t=1

(
(xt − x∗)

T gt

)
≤ 1

2η
||x1 − x∗||22 +

η

2

T∑
t=1

||gt||22

Because we know the expected value of gt is the gradient we can take expectations:

E (LHS) =

T∑
t=1

(
(xt − x∗)

T ∇f(xt)
)

E (RHS) =
1

2η
||x1 − x∗||22 +

η

2

T∑
t=1

(
E
(
||gt||22

))

3

Stochastic Gradient Descent

For any {g1,g2, ...gT }, running gradient descent with xt+1 = xt − ηgt, then we know:

T∑
t=1

(xt − x∗)
T gt ≤

1

2η
||x1 − x∗||22 +

η

2
·

T∑
t=1

(
||gt||22

)
When we are doing Stochastic gradient descent, our gt is a random vector with an additional
property, namely that g = g(xt) with E(gt|xt) = ∇f(xt). Further we find that at the end of the
algorithm,

Efinal(gt) = Et+1(gt) = Et(E(gt|x1,x2, ...xt)

Therefore we find:
Et [∇f(xt)] = E [∇f(xt)]

Which gives us:

E

[
T∑
t=1

(
(xt − x∗)

Tgt
)]

=
T∑
t=1

(
E
[
(xt − x∗)

Tgt
])

=
T∑
t=1

(
Ex1, ...xt

[
Et+1

[
(xt − x∗)

Tgt
]])

Now, Et+1

[
(xt − x∗)

Tgt
]

is a random variable, but when we calculate it we get to fix the
choices for x1, ...xt. So this becomes:

T∑
t=1

(
Ex1, ...xt

[
E
[
(xt − x∗)

Tgt|xt

]])
Now we observe that fixing xt causes this to become deterministic.

4

Efinal

[
T∑
t=1

(
(xt − x∗)

T gt

)]
=

T∑
t=1

(
Ex1,x2, ...xt

[
(xt − x∗)

TE (gt|xt)
])

=
T∑
t=1

(
Ex1,x2, ...xt

[
(xt − x∗)

T∇f(xt)
])

≥
T∑
t=1

(Ex1,x2, ...xt [f(xt)− f(x∗)])

≥
T∑
t=1

(E [f(xt)])− Tf(x∗)

Efinal

[
T∑
t=1

(
1

T
(xt − x∗)

T gt

)]
≥ 1

T

T∑
t=1

(E [f(xt)])− f(x∗)

≥ E

[
T∑
t=1

(
f(xt)

T

)]
− f(x∗)

Because f is convex, we know:

1

T

T∑
t=1

(f(xt) ≥ f

(
1

T

T∑
t=1

(xt)

)

Therefore we have:

Efinal

[
T∑
t=1

(
1

T
(xt − x∗)

T gt

)]
≤ 1

T
E

[
1

2η
||x1 − x∗||22 +

η

2

η

2

T∑
t=1

(
||gt||22

)]

≤ 1

2ηT
||x1 − x∗||22 +

η

2T

T∑
t=1

(
Efinal

[
||∇f(xt)||22

])

Quality of an Estimator

The quality of an estimator for stochastic gradient descent is given by ρ, where

E
[
||g(z)||22

]
≤ ρ2

Example

If we let:

f(x) =
1

2m
||Ax− b||22 =

1

2m

m∑
i=1

(
(aTi x− bi)2

)
5

and we let g be given by sampling i from {1, 2, ...m} and return aTi x− bi. This means:

E
[
||g||22

]
=

1

m
·

m∑
i=1

(
||ai||22 · (a

T
i x− bi)2

)
=

1

m
||A||F

Where ||A||F denotes the Frobemius norm of A, which is simply the sum of the squares of the
matrix entries. The Frobemius norm is always larger than the largest eigenvector, but they are
generally fairly similar. So even if you have to run slightly longer, you get huge savings. Here the
quality of the estimator is actually given by ρ = ||A||F !

2.2 Stochastic Gradient Descent Theorem with Minimal Assumptions

If we have an estimator with a high enough quality then Stochastic Gradient Descent can guaran-
tee:

E
[
f(x(T))

]
− f(x∗) ≤

D2

2ηT
+
ηρ2

2

In particular this means if we want the right hand side to be less than ε, then we must set η and
run for iterations given by:

η =
ε

2ρ
, T =

D2ρ2

ε2

Instead of sampling just one i, we can sample a bunch of different is to construct our approx-
imation of the gradient. This procedure is called Batch Stochastic Gradient Descent and reduces
the variance without changing the expectation. In theory, batching doesn’t change anything, but
in practice it tends to perform much better, particularly in distributed computing environment
where we get to “reuse” previous gradients.

2.2.1 Other forms of Stochastic Gradient Descent

What happens when our function is some other really complicated (non-sum based) function,
that was really expensive to evaluate. We can instead pick one dimension and walk only in that
direction based only off that coordinate’s gradient. This means we only have to consider one
dimension of our gradient each iteration and not the whole thing. In particular this means we
have:

[xt+1]i = xt − η · n · [∇f(x)]i

Which still has:
E [xt+1 − xt] = −η∇f(xt)

In practice, we don’t chose our dimension (i) uniformly at random, but instead proportion the
probabilities based off the smoothness of the function.

6

	Motivation
	Least Squares
	Support Vector Machine
	Proxy Problem
	Gradient Decent on the Support Vector Machine Problem

	Stochastic Gradient Descent
	MORE === Analysis (in the unconstrained case)
	Stochastic Gradient Descent Theorem with Minimal Assumptions
	Other forms of Stochastic Gradient Descent

