
Optimal Data-Dependent Hashing for Approximate
Near Neighbors: final report

Sungil Ahn, Almas Abdibayev

1 Introduction and motivation

In the Nearest Neighbour problem, we are given a set P of n points in d-dimensional space,
and are asked to return the closest point to an arbitrary query point q. For low d, there
are algorithms to provide the exact solution efficiently (e.g. Voronoi diagram for d = 2).
However, as the dimensions increase, those algorithms break down, and the cost of distance
computation becomes increasingly costly.

To address this, we can relax our requirements and ask for a point that is “close enough”:
in the Approximate Near Neighbour problem (ANN), we are asked to provide a point that is
within cr distance (where c is our approximation factor) from q if there exists a data point
within distance r.

This approach is useful for studying the underlying structure of data - while not exactly
similar to clustering in terms of its goals or globality of its span, ANN does help us to study
and analyze each datapoint in the context of other datapoints, which is especially helpful
in comparison of high dimensional vector representations of said data. For instance, due to
the speed of ANN, we could search through billions of images to match images, or study
the properties of the generative models by sampling two closely related vectors that produce
different “fake” datapoints.

In fact, the data-dependent hashing of this paper makes it somewhat akin to clustering,
as both iteratively adapt to the shape of the dataset, and both essentially “cluster” objects
(which, in the context of our paper, correspond to partitions of the state space, as explained
later).

Interestingly, the algorithm presented in the paper adapts to the structure of the dataset
despite having no prior knowledge of the dataset itself nor assuming any structure of the
points, and results in better performance and insight than the non-adaptable algorithms.

Another theme (more thought is given to this in critiques section) touched on by this
paper is the embedding high dimensional vectors Rd into objects of with certain properties
is being explored in the realm of word embeddings. One example is the embedding of
entities in knowledge bases (in the form of the word vectors) into hyperbolic space. The
hyperbolic space naturally provides us with soft (non-discrete and continuous) approximation

1

of a tree data structure, which is omnipresent among relational knowledge bases. One can
thus modify the standard training procedure for word embeddings to take into account
relations between words and approximate the structure present within the data explicitly
(as opposed to embedding vectors in Euclidian space which does not have any natural way
to represent trees, which would force us to come up with separate algorithm to reveal such
structures). [NK17] This paper, however, has a fixed way to embed the objects onto a
sphere without any optimization involved. Why is any of this important? As highlighted
before we are interested in adapting to data with no prior knowledge of its structure. It
is not completely true that we have no prior knowledge however. The choice of embedding
structure itself is a form prior knowledge in the form of a heuristic that we as computer
scientists choose: objects that have ”nice” properties. Some of these objects are “nicer”
than others, e.g. more generalizable than others to all sorts of distributions of data. Thus,
the meta question of such choice enters our field of vision as we read this paper.

2 Basics

Having mentioned interesting aspects of this work, we can continue with the explanation of
the paper, starting with the basics of the underlying method.

Recall that in class, to address ANN, we introduced the Locality-Sensitive Hash family
(LSH), which had the desirable property where if the points were close, they would collide
with high probability p1, and if they were far apart, they would not collide with high prob-
ability p2. This property was used to determine that if the hash of the query collided with
some point, then there was a high probability that the point is close to the query.

We proved that this scheme took O(n(1+ρ)) space and preprocessing time, with O(dnρ)
query time, with ρ = ln p1

ln p2
= 1

c
as the measure of quality for the algorithm. While this is

a far cry from the O(dn) query time of the näıve approach to ANN, subsequent research
[DIIM04] showed that ρ ≤ 1

c2
, and research on the lower bound showed that this bound is

tight [MNP07].
So is ρ = 1

c2
the best we can do? Using regular LSH, yes. However, let us consider

what the LSH family is really doing. While drawing a hash function at random exhibits the
locality-sensitive property, each hash function is simply mapping the state space according to
some predetermined rule. So if P happens to be ”dense” in one place but sparse everywhere
else, the hash function does not make use of the information, and might even hash points
from the dense part away from each other, destroying the locality.

Thus, data-dependent hashing – a randomized hash family that depends on the actual
points in P - can help solve ANN more efficiently. The intuition is as follows: as the goal
of the hash functions is to “clump up” points that are close together and separate distant
points, we can essentially treat them as ways to partition space; so instead of partitioning
space based on predefined rules, we can partition iteratively based on how dense/sparse
certain parts of the state space are in order to get a more “optimal” partition.

For instance, [AINR14] was able to obtain ρ =
7
8

c2
+ O(1)

c3
using data-dependent LSH. How-

ever, for large values of c, preprocessing took quadratic time, and as the iterative partitioning
always started with data-independent LSH, it inevitably led to inefficiencies.

This paper presents an improvement over the previous approach, with ρ = 1
2c2−1

(which

2

turns out to be optimal [MNP07]). In addition, it effectively reduces ANN on an arbitrary
dataset to ANN on an essentially random dataset, and provides a near-linear preprocessing
time!

3 General idea

So how does this work?
The basic idea is to place every data point on a sphere, and to carve out “dense clus-

ters” into caps so we can have smaller enclosing spheres, after which the ”pseudo-random”
remainder will be left. For the dense clusters, we can enclose them in slightly smaller balls,
and recurse. For the remainder, we can split that space, and recurse on every partition –
and the smaller the radius of the enclosing ball, the more sensitive the function is to locality,
and the better the ρ.

This iterative partitioning forms something akin to a decision tree, and we can query a
point by “following down” the paths to the leaves. And, to boost our probability of success,
we can make O(nρ) copies of the above spherical LSH structure, just as we have in class to
boost probability of success with data-independent LSH.

But why are we working with spherical LSH in particular? Just like every other LSH, it
provides high chance of colliding for close points and low chance for distant points. However,
it turns out that if the condition ‖u−w‖, ‖v−w‖∈

√
2± ε, ‖u− v‖≤ 1.99 is met, the event

of u colliding with w becomes almost independent of u colliding with v. This “three point
property” will come into play later.

While the paper shows proof of this property (Theorem 3.1), it does not provide any good
intuition as to why placing points on a sphere rather than the universe would provide the
benefits, not to mention there is no discussion of how one would arrive to this conclusion nor
discussion of potential benefits of choosing different and perhaps, more complex geometrical
objects as a hyperparameter of this algorithm.

4 High level description of algorithm

Anyway, with this intuition in mind, we can construct the concrete steps for the algorithm:
For starters, we previously assumed that we’re working exclusively on a ball. To reduce

the general space Rd down to the ball, just like before, we still look for clusters (i.e. balls of
radius 2c2) that contain at least τm points. However, the difference here is that since we’re
taking the intersect of Rd and a ball, the resulting “cap” is the ball itself. Other than that,
we can recurse on it like any other cap. Additionally, to partition the remainder, we want
an LSH that operates on Rd rather than a sphere, so we use [DIIM04] for that purpose.

Additionally, when we think about how we “carve out” clusters, we are essentially inter-
secting the state space with some ball and enclosing it with a sphere. However, that means
most of the clusters are not on the surface of the sphere, but rather inside it. To deal with
this, we must somehow reduce the query on the cap down to the query on a sphere.

To do this, we can “discretize” the ball by rounding all data points’ distances to o (to
a multiple of δ, which provides the trade-off between “accuracy” and “speed”), and since

3

the query can be arbitrary, we round all possible distances to o as well so that we can just
look up the rounded distance from q to o during query time. Then, for each possible pair
of distances δi (from o to p) and δj (from o to q), we can create new encompassing spheres
by only taking all data points that have the same “rounded” distance (δi). Note that the
resulting sphere would have projections of r1 + 2δ and r2 − 2δ since a. we are changing
distances by up to 2δ by rounding to the nearest multiple of δ (∵ triangle inequality), and
b. the rounded position of q might not be on the sphere formed by the sphere centering at
o with radius δi. The intuitive explanation for this is that for each point within the ball
we draw a sphere that passes through it and then create a second sphere through which a
potential query point will pass. We then outline every possible outer sphere for different
query points, bounded by certain constraints. Once we have this two spheres separated by
a certain distance, we can project the potential query point lying on outer sphere onto inner
sphere, ”hashing” it into bucket defined by a sector outlined on the sphere. Then we recurse
on resulting inner sphere.

While it seems like the rounding and projection would introduce errors, as is shown in
the paper, the errors can be controlled by carefully setting the parameters. However, such
a convoluted scheme still makes us wonder if there is a way to somehow round positions of
p and q in a way that makes q the center rather than o, which would allow bypassing the
projection step at the very least.

In regards to spheres of clusters, we note that for some values of r1, r2 and R, we already
know how to solve the ANN. For instance, when r2 ≥ 2R, literally any point on the sphere
would satisfy the query. Or, if r2 ≥

√
2R, we can directly the apply the spherical LSH family

to the data points P and get the bound we want (∵ Thm. 2.3). Similarly, with r1
r2
≤ 1

(2c2−1)
,

we can directly apply [DIIM04] to P and get our ρ-bound of 1
2c2−1

.
As we still have a decision tree-esque structure like before, we can query a point by

querying each dense cluster-enclosing ball and any nonzero P ∩ R(q) recursively. And at
each ball “node”, we can see whether there is any point satisfying the query by “rounding”
q so that the distance between o and q is a multiple of δ (just like what we did while
preprocessing), then for all possible potential (rounded) distances between p and o, in a
similar manner to the preprocessing step, we can query the corresponding sphere. The
query eventually stops when one of the spheres fall into one of the 3 cases in which we can
partition the sphere with guarantee that ρ has the bound we want.

5 High level analysis of the algorithm

We encourage the interested reader to peruse the original paper for detailed analysis. Here
we present condensed version of it.

5.1 Convergence

The general idea is that for dense clusters, we are reducing the radius of the enclosing sphere
with each iteration, and for the pseudorandom remainders, the points more or less lie

√
2R

away from each other, meaning it looks like a random distribution, for which the direct
application of the spherical LSH is efficient.

4

Since we divide our algorithm into two parts - cap carving and dense cluster elimination
- we have to analyze each part separately.

First, we want to show that caps that we generate decrease in size. This translates
to radius of the ball enclosing this points filled cap being bounded by the some fraction of
original radius R. E.g. R̃ ≤ (1−Ω(ε2))R. Consider the cap generated by δB(o,R)B(x, (

√
2−

ε)R)). WLOG we assume o = 0 and x = (R, 0, . . . , 0). The analysis then simplifies to
essentially asserting that since we picked a subset of points that are (

√
(2) − ε)R away

from the point of interest (anchor point for cap), and hence are covered by a circle of
radius (

√
(2)− ε)R centered at that anchor point we can always inscribe a circle of a radius

≤ (1− Ω(ε2))R to cover these points.
Next we want to show that dense clusters also decrease in size in reasonable amount

of time. The proof of convergence of this relies on separate convergences of each of its
subfunctions. The main one of which is the function that converts the dense clusters to
a sphere using the annuli technique (called ProcessBall in the original paper), which is
recursive. This function itself relies on the function that deals with points on the sphere
(ProcessSphere), which is also recursive and a function that transforms regular Rd space
into (Process). Thus, if we can show that if all 3 converge, then we can conclude that
algorithm converges as well.

The paper sets up following constants for the proofs that we will use:

• ε = 1 log log log n

• δ = exp(− log log log n)C, where C is set to the value s.t. errors introduced by rounding
by δareminimized

• τ = exp(−log 2
3
m)

The original paper makes the following argument:

1. Show that under relaxed assumption of that rounding of distances (done to map points
to a new sphere) introduces no errors to ProcessBall and converges at a certain rate,
the convergence is bounded by a certain quantity (Oc(

1
ε6

))

2. Show that this bound holds for a regular, non-relaxed case of ProcessBall, which only
differs by a small multiplicative error

3. Show that ProcessSphere and Process converge at a rate O(log n)

To prove the first item we divide ProcessBall into two categories: category A - λ∗ shrink-
ing and category B - λ∗ non-shrinking. We analyze each separately, after which we sum the
number of calls of each.

To analyze category A, we use the quantity k = ∆R2
r22

as our guiding tool. This quantity

will help us determine the split between two types of calls that ProcessBall falls into. k
controls the rate at which ratio between new and old threshold (termed η) ratio grows.

On a higher-level quantity λ∗ represents a lower bound on the ∆R2
r22

. We skip past certain

derivations to assert that there are a total of Oc(
1
λ∗

) shrinking calls. Further derivations
show that Oc(

1
λ∗

) = Oc(
1
ε4

) of such calls.

5

After we similarly derive the number of non-shrinking calls, we arrive at the Oc(
1
ε6

).
Thus, we sum the number to get Oc(

1
ε6

) +Oc(
1
ε4

) ≤ Oc(
1
ε6

) total calls.
The next item (small multiplicative error) is assumed to be the case by the authors

through setting parameter C.
The last item is proven through showing that at each call the number of points within

the pseudorandom component slowly decreases (by a constant strictly smaller than one) and
that gives us bound of O(log n).

5.1.1 Space and query time

The overall expected space the data structure occupies is nˆ1+o˙c(1) .
Proof.

1. Discretization step of ProcessBall (which creates many sphere instances) induces the
fact that any pP0 can participate in several branches of recursion, we need to figure
out the number of these branches, and the cost of each.

2. The point p can find itself only in bounded number of branches - nˆo˙c(1). This is
derived using branching factor Oc(

1
δ
) (derived using algebra from number of calls of

inner loop of the, ProcessBall) and O
(O(1))
c number of calls to ProcessBall (derived in

proof for convergence of ProcessBall), in the following manner:

of branches = Oc(
1

δ
)O

(O(1))
c = noc(1)

3. Since we figured out the number of branches, it’s time to look how much each branch
call costs: nˆo˙c(1). This is derived using the fact that number of calls per branch is a
multiple of number of invoked recursive calls of ProcessBall and each calls their own
instance of Process and ProcessSphere, which take up O(log n)space.Thus :

of calls per branch = Oc(log n−O(1)) = Oc(
log n

εO(1)
) = noc(1)

4. We then figure out the space consumption of each point per partition by combining number
of branches and cost of each branch: noc(1)noc(1) = n2oc(1) = noc(1)

5. Finally we need to figure out additive cost of base cases within each branch call for every
point: nˆo˙c(1) (taken as a fact in the paper)

6. Combining above items we get total space consumption of noc(1)(noc(1) +noc(1)) = 2n2oc(1) ≈
noc(1)

5.1.2 Query time

We need to expand query time to all of its essential elements:
Query time = E[number of nodes in the recursive tree]·(cost of a hashing point to a partition

+ cost of base case)

6

E[number of nodes in the recursive tree] = (branching factor·

number of calls to Process Ball)number of calls in recursion stack = (
1

δ
· log n

τ
)(Oc(εO(1))

= nOc(1)

Then Query time = nOc(1)(nOc(1) + nOc(1)) ≈ nOc(1) (costs taken theorems 2.3, 2.5, 3.1;)

5.1.3 Preprocessing costs

That said, the preprocessing step looks nothing like polynomial time! In particular, the
sheer number of ball partitioning/clustering we have to do jumps out to us: doesn’t “pick a
point and check if there are X number of points within a certain radius” involve at least X
number of distance calculations, not to mention, wouldn’t we need to check literally every
single point in the worst case?

We can reduce the number of such computationally expensive operations by sampling the
data points, since we only need clusters with ≥ ε2τn = n1−oc(1) points. Then, if we sample
noc(1) points and find dense clusters within this sample, the VC dimension provides us with
a probabilistic upper bound on the test error – which in this case would be the probability
that we found a dense cluster within the sample but it didn’t translate to a dense cluster
“big enough” in the overall dataset. This upper bound then assures us that the sample is
accurate enough most of the time,

And finally, the author makes a passing remark to the difficulty of maintaining a dynamic
data-dependent hashing algorithms for ANN. In case of regular LSH, because the hash func-
tions are data-independent (i.e. fixed once chosen), we have the option of adding more
points simply by hashing them as well – the new point doesn’t affect the hashes of the exist-
ing points. Clearly, this is not the case for data-dependent hashing algorithms. Practically
speaking, most OLTP workloads that involve geospatial queries (especially Near Neighbour
queries) only need low dimensions (e.g. coordinates on Earth as a pair of longitude latitude).
However, if we did need a dynamic data-dependent schemes with “reasonable” maintenance
costs, we can’t help but wonder whether we could exploit the fact that the iterative parti-
tioning outlined in this paper looks like a tree, i.e. could we possibly “add” new data points
to any particular node? While we do have a relatively fast way of figuring out where the
new point should be (i.e. querying the tree), my concern is that no matter how well the tree
is balanced (assuming that’s even possible), there would be a significant write amplification
problem – after all, the path to the new point needs to all be updated with the addition
of one point, which in general would involve log x, where x is the number of nodes in the
“tree”. This write amplification problem essentially gets back to the author’s point about
there being replicated points: “In fact, it will be necessary for some points to be replicated
in a few children...” (pg. 4). While he does later show that the degree of replication is no(1),
which is a fairly trivial value in terms of storage, it starts to really impact the write amplifi-
cation due to this factor. If there exists a data-dependent LSH (which, since it is iterative,

7

would have somewhat of a tree structure) that does allow for “cheap” inserts of data points,
then it would have to be relatively “flat”, i.e. it would have to be able to find the answer
to a query q in fewer partitions. Perhaps here, the aforementioned concern of the seemingly
arbitrary choice of a sphere as the state space and the suggestion to have different spaces
as a hyperparameter might come into play, as they might have different characteristics that
lead to same or slower query time but in fewer partitions.

6 References

[AINR14] Alexandr Andoni, Piotr Indyk, Huy L. Nguyen, and Ilya Razenshteyn. Beyond
locality-sensitive hashing. In Proceedings of the 25th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA ’2014), pages 1018–1028, 2014.

[DIIM04] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-
sensitive hashing scheme based on p-stable distributions. In Proceedings of the 20th ACM
Symposium on Computational Geometry (SoCG ’2004), pages 253–262, 2004.

[NK17] Maximilian Nickel, Douwe Kiela. Poincaré Embeddings for Learning Hierarchical
Representations. In Proceedings of Neural Information Processing Systems. (NIPS 2017).

[MNP07] Rajeev Motwani, Assaf Naor, and Rina Panigrahy. Lower bounds on locality
sensitive hashing. SIAM Journal on Discrete Mathematics, 21(4):930–935, 2007.

8

