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Problem Statement

This paper is concerned with how to escape saddle points efficiently, even in cases
pertaining to non-convex functions. Ultimately, it shows that gradient descent
modified with appropriate perturbations escapes saddle points efficiently.

In convex optimization, gradient descent finds a first-order stationary point
independent of the number of dimensions. In non-convex settings, convergence
to first-order stationary points is more difficult, as these points could be local
maxima or saddle points. Past literature suggests finding local minima is
sufficient in place of finding global minima. However, saddle points correspond
to suboptimal solutions and occur frequently and in high-dimension,
non-convex optimization problems. Though some papers suggest workarounds
to this problem, such as adding noise at each step of gradient descent, these
solutions often are inefficient and have runtimes related to the number of
dimensions, considerably slowing runtimes compared to rates of convergence to
first-order stationary stationary points.

Given the above, the authors of the paper are concerned with whether
gradient descent can escape saddle points and converge to local minima in
time independent of the number of the dimensions. Specifically, the paper
investigates the time complexity of converging to second-order stationary
points, as second-order stationary points are local minima under the
assumption that all saddle points are strict.

Relevance

Many of problems in machine learning rely on optimization of some kind.
Gradient descent is one of the most widely utilized optimization algorithms in
machine learning models. In fact, it is one of the most widely used algorithms
in machine learning, period. Part of the appeal of gradient descent lies in its
efficiency even when applied in high-dimensional settings. Gradient descent
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can reach a point with a small gradient within a number of iterations that is
independent of dimension. In fact, for functions that are l -smooth (see
Definitions section below), gradient descent can find a point x with
||∇f(x)|| ≤ ε—known as an ε-first-order stationary point—within
l(f(x0) − f∗)/ε2 iterations, where x0 is the initial point and f∗ is the optimal
value of f .

While this bound is highly useful for convex optimization, in which finding
an ε-first-order stationary point is akin to finding a global optimum, first-order
stationary points in non-convex settings can indicate a variety of point types,
including local or global minima, local maxima, and saddle points. Many
problems of interest in the field of machine learning—matrix completion,
principle component analysis, low-rank models, tensor decomposition, and
deep neural networks—deal with non-convex settings, which makes non-convex
optimization a highly salient topic.

Despite the numerous possible things a first-order stationary point can
indicate in a non-convex setting, research has shown that some types of
first-order stationary points are perhaps more useful than others. For some
non-convex problems, it suffices to find a local minimum instead of a global
minimum (Ge et al., 2015; Sun et al., 2016b; Bhojanapalli et al., 2016). Saddle
points, however, can correspond to highly suboptimal solutions for non-convex
problems. Research indicates that non-convex optimization problems in high
dimensions almost requisitely contain saddle points (Dauphin et al., 2014).
Given that saddle points can cause gradient descent to get “stuck” at a highly
suboptimal points, methods to escape saddle points are highly useful in
non-convex optimization problems.

Under certain conditions, methods to escape saddle points exist, such as
adding noise to the step (Ge et al., 2015) or random initialization (Lee et al.,
2016). However, the bound on the number of iterations for these methods
to converge is still dependent on dimension, leaving us with the problem of
gradient descent getting stuck or being very slow in high-dimensional, non-
convex optimization settings. Thus, this paper’s examination of escaping saddle-
points and converging to local minima in a number of iterations that is almost
dimension-free is highly relevant to ongoing work in the field of machine learning
and addresses an issue that is ubiquitous across high dimensional, non-convex
problems.

Related Work

According to the authors, there has been much past literature regarding
finding convergence for non-convex optimization problems. However, many of
these solutions are often problem-specific and hard to generalize to other
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non-convex optimization problems. Nevertheless, the authors categorized past
bodies of literature that focused on solutions for for general non-convex
optimization problems: Hessian-based solutions, Hessian-vector-product-based
solutions, and gradient-based solutions.

Hessian-based Solutions. These algorithms rely on computing the
Hessian, or a second-order derivative matrix, to find second-order stationary
points as opposed to first-order stationary points. The idea is that
second-order optimization methods converge to second-order stationary points.
When the eigenvalues are positive for a given ∇f(x), then x must be a local
minimum. Otherwise, x may be a local maximum or a saddle point. The
authors focus on two algorithms that rely on computing the Hessian to find
second-order stationary points: cubic regularization (Nesterov and Polyak,
2006) and trust region (Curtis et al., 2014) algorithms, both of which can find
local minima efficiently. However, the paper points out that because these
algorithms rely on computing the Hessian per iteration, they are often times
too expensive to be put into practice, as many matrix operations would have
to be applied onto a large data set per iteration.

Hessian-vector-product-based Solutions. Instead of calculating the full
Hessian, some past papers explore using only Hessian-vector products in order
to find second-order stationary points. This would entail using a
Hessian-vector product oracle: given function f , point x and direction u, the
oracle returns ∇2f(x) · u. Some examples the paper uses are Agarwal et al.
(2016), Carmon et al (2016), and Carmon and Duchi (2016), all of whom use
the Hessian vector product to find second order stationary points. The paper
suggests that the these algorithms can be implemented efficiently in roughly
the same time complexity as gradient-based algorithms. However, the paper
does not focus on these Hessian-based algorithms and instead focuses on
gradient-based Oracles.

Gradient-based Solutions. Finally, the paper also discusses work that
explores convergence to second-order stationary points without computing the
Hessian. These solutions include algorithms such as stochastic gradient
descent and perturbed gradient descent. For example, the idea behind
stochastic gradient descent is that, given only the gradient of the function,
randomly adding noise to a point (“nudging it”) is enough to escape a saddle
point. This is often extremely efficient as it is less expensive to randomly
calculate a noisy gradient than to calculate a true gradient, and it is obviously
less expensive than computing the Hessian matrix. Previously, the complexity
of stochastic gradient descent was unknown, but Ge et al. (2015) showed that
convergence to a second-order stationary point is bound in polynomial time,
specifically poly(d/ε) iterations. Levy (2016) expanded on this by showing that
normalized gradient descent converges in O(d3 · poly(1/ε)) time. This paper
finally expands upon latter’s run time by showing that perturbed gradient
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descent can converge to second-order stationary points up to polylog factors,
which matches the run time of converging to first-order stationary points.

Analysis

The general result of this paper is an analysis that shows that perturbed gradient
descent can be used to find an approximate second-order stationary point in at
most polylog(d) iterations. Its main contributions include the following:

• For l-gradient Lipschitz, ρ-Hessian Lipschitz functions, gradient descent
finds an ε-second-order stationary point within Õ(l(f(x0) − f∗/ε2)
iterations, where Õ(·) hides polylog factors.

• Under a strict-saddle condition, the convergence rate from above can be
directly applied for finding local minima.

Algorithm

The paper analyzes the the “Perturbed Gradient Descent” algorithm, which is
a modification of gradient descent that adds a small perturbation when likely
near a saddle point.

Perturbed Gradient Descent

for t = 0, 1, ... do
if ||∇f(xt)|| ≤ gthres ∧ t− tnoise > tthres then

tnoise ← t
x̃t ← xt
xt ← x̃t + ξt, ξt uniformly ∼ Bo(r)

if t− tnoise = tthres ∧ f(xt)− f(x̃tnoise) > −fthres then
return x̃tnoise

xt+1 ← xt − η∇f(xt)

How the Algorithm Works. At each time step, the algorithm checks for
several conditions. When the norm of the current gradient is below a certain
threshold (which would suggest that we might be close to a saddle point), the
algorithm adds a small random perturbation to xt, where the perturbation is
uniformly sampled from a d-dimensional ball B centered at 0 with a suitably
small radius. If the function value does not decrease enough after a certain
threshold of iterations, then the algorithm returns the current value of xt. This
indicates that xt should be a sufficiently “close” to a second-order stationary
point and not a saddle point.
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Definitions

To analyze the complexity of the perturbed gradient descent algorithm, it is
helpful to review certain definitions. These definitions were taken from the
paper.

• l-smoothness. A differential function f is l-smooth if

∀x1, x2,
||∇f(x1)−∇f(x2)||

||x1 − x2||
≤ l

• α-strongly convex. A twice differentiable function f is α−strongly
convex if

∀x, λmin(∇2f(x)) ≥ α

• ρ−Hessian Lipschitz. A twice differentiable function f is ρ−Hessian
Lipschitz if

∀x1, x2,
||∇2f(x1)−∇2f(x2)||

||x1 −X2||
≤ ρ

A strongly convex condition ensures that descent converges linearly to a
unique stationary point (the minima). l-smoothness and ρ-Hessian Lipschitz
ensure that the function behaves properly around saddle points (the gradient
descent as well as the spectral norm both do not change drastically).

• Saddle Point. A point x is a saddle point if it is a first-order stationary
point but not a local minimum.

For convenience, the paper describes saddle points as both traditional
saddle points and local maxima.

• Strict Saddle Point. For a twice differentiable function f , x is a strict
saddle point if satisfies either of the following: (1) ∇f(x) is very large, or
(2) if λmin(∇2f(x)) < 0.

• Second Order Stationary Point. For a ρ−Hessian Lipschitz function
f , point x is a second-order stationary point if:

||∇f(x)|| ≤ 0 and λmin(∇2f(x)) ≥ 0

A point x is a ε−second order stationary point if

||∇f(x)|| ≤ ε and λmin(∇2f(x)) ≥ −√ρε

According to the paper, when all saddle points are strict, all second-order
stationary points are local minima.
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Main Results

Given that the function f is both l-smooth and p-Hessian Lipschitz, one can say
that f is well-behaved near a saddle point, making it possible to escape from
saddle points with a small perturbation. “Well-behaved” refers to the shape
around the saddle point: (1) l-smooth ensures the gradient does not change too
rapidly, and (2) ρ-Hessian Lipschitz ensures the spectral norm also does not
change rapidly. The paper formalizes this notion with the following theorem:
given that f is both l-smooth and ρ-Hessian Lipschitz, there exists an absolute

constant cmax such that for any δ > 0, ε ≤ l2

, 4f ≥ f(x0) − f∗, and constant c ≤ cmax, the perturbed gradient descent
algorithm described above will output an ε-second order stationary point, with
probability 1− δ, and terminate in the following number of iterations:

O(
l(f(x0)− f∗)

ε2
· log4 dl4f

ε2δ
).

cmax represents a bound from which a range of parameters could be selected
from. In addition, the algorithm is only concerned in situations where the
condition ε ≤ l2/ρ applies. In cases where ε > l2/ρ, standard gradient descent
suffices (as ε > l2/ρ =⇒ √

ερ ≤ −l ≤ λmin(∇2f(x)) under the definition of a
ε-second order stationary point, which is also a strict saddle point).

Under a perturbed form of gradient descent with an added Hessian-Lipschitz
condition, we can converge to a second-order stationary point in

Õ(
l(f(x0)− f∗)

ε2
)

This runtime complexity is almost the same time as is required for gradient
descent to converge to a first-order stationary point. For comparison, standard
gradient descent finds a first-order stationary point within l(f(x0) − f∗)/ε2
iterations.

This theorem holds true if we consider the behavior of the point that we
are iterating. Suppose we have a point x. This point is either a second-order
stationary point (in which case we are done), or it is not a second-order
stationary point. If x is not a second-order stationary point and we iterate on
it via this perturbed gradient descent algorithm, then by our definition of x,
we know that either the gradient of x is large or the Hessian of x has a
significant negative eigenvalue. If the gradient is large, then we will not have
met our perturbation condition and will continue traditionally. However, if the
gradient meets our perturbation threshold and the Hessian has a significantly
negative eigenvalue, then by adding a perturbation to our gradient descent
step and then running normal gradient descent for a couple iterations, our
function value will will decrease by a certain value (which we represent in the
algorithm as our function threshold) with high probability.
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Functions with Strict Saddle Property

In addition to assuming the function is Hessian-Lipschitz, if we assume that all
saddle points are strict, then we can say that not only does our perturbed
gradient descent algorithm terminate in Õ(l(f(x0) − f∗/ε2), but also the
algorithm converges to local minima (in the case of strict saddle points, all
second-order stationary points are local minima). While it may seem
unrealistic to assume this property, the paper claims that for many many
practical non-convex problems, all saddle points are strict (including problems
concerning orthogonal tensor decomposition, matrix completion, and principal
components analysis). In these kinds of non-convex problems, it has been
shown that local minima are also global minima. Thus, efficiently finding
ε-second-order stationary points, in these cases, is akin to finding solutions to
non-convex problems with global guarantees.

Extensions

The above results can be further improved to linear convergence when the
function has local structure. The paper presents a way of applying gradient
descent on functions that uphold standard β-smooth (where β ≤ l) and
α-strongly convex conditions. Certain low-rank problems, such as matrix
sensing and matrix completion, often see the appearance of this regularity
condition.

The final contribution of the paper is a new technique to bound the volume
of the ”band” of points where gradient descent gets stuck around a saddle point;
by adding a random perturbation, the paper shows that the resulting point is
very unlikely to be in the band, thus making efficient escape from a saddle point
possible. The authors observe that near a saddle point, there exists a certain
set of points for which it is very easy to get “stuck” using gradient descent.
Approximating this “stuck” region as a flat set mandates using a very small
step size, resulting in suboptimal runtimes. However, the paper notes that
instead of trying to characterize the shape of the stuck region (which varies
with dimensionality), one can note that the stuck region is likely very thin and
then try to characterize the thinness of the stuck region. The paper bounds
the thickness of the stuck region by O(1/

√
d). This bound on the thickness of

the stuck region allows the perturbation algorithm to escape saddle points with
high probability, which is foundational for the paper’s main analysis.

Conclusion

Overall, the authors present an interesting and novel analysis of perturbed
gradient descent that provides a nearly dimension-free result for the algorithm
in a general non-convex setting. Although the assumptions the authors make
may limit the applicability of this method for extremely complicated
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non-convex settings, the paper’s analysis is helpful in considering non-convex
optimization methodologies and prompts research into ways that other
modifications of gradient descent can lead to dimension-free guarantees.

Note: all references come from the References section of the paper.
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