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1 Introduction

Sex is the queen of problems in
evolutionary biology. Perhaps no other
natural phenomenon has aroused so
much interest; certainly none has
sowed as much confusion.

Graham Bell [1]

One of the most interesting problems remaining in evolutionary biology today is the role
of sex. The Theory of Evolution, originally proposed by Darwin and widely accepted today,
predicts that species evolve gradually over multiple generations, and that through the process
of natural selection the combination of genes with the highest fitness eventually dominate
the population.

It is then perplexing that sexual reproduction, i.e. the combination of genomes of two
organisms, is so ubiquitous in nature, when it seems to be disadvantageous at every level
compared to asexual reproduction, i.e. the replication of the genome of a single organism.
Sex requires biological and social processes that are costly and energy-inefficient. Also, pro-
ducing male and female organisms means that on average only half of all offspring is able to
produce more offspring themselves, compared to asexual production, in which all organisms
are capable of reproduction. Additionally, combining genomes means that particularly suc-
cessful gene combinations are broken down, and result in offspring that exhibit lower fitness
than their parents.

Breaking down highly favorable gene combinations has been one of the major roadblocks
in understanding the role of sex, since it impedes the evolution of the population towards
high fitness. A recent paper [4] in evolutionary biology proposes a potential solution to this
problem by challenging the assumption that sex must maximize fitness; instead, the authors
conjecture that sex optimizes for the mixability of genes, i.e. it selects genes that combine well
with many others. Conversely, genes that work extremely well in one particular combination
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but poorly in all others are negatively selected and ultimately disappear from the gene pool.
Although the authors propose a mathematical model for their theory, due to the complexity
of the equations they are only able to provide empirical proof using simulations that the
theory is correct.

The paper we picked builds on this work, and provides a mathematical proof that mix-
ability is indeed the optimality criterion of sex. Beyond that, it shows that evolution under
sex is equivalent to a cooperation game between genes, where individual genes represent the
players that try to optimize for the average fitness of the population.

Finally, the paper also touches on the problem of diversity. In the simplified theoretical
setup considered in this paper, the evolutionary process eventually converges to an equilib-
rium state. It would be disappointing (and indeed, counter to our observations in nature) if
this model of evolution converged to only a few genetic combinations rather than a diverse
pool of individuals. To address this, the authors manage to show that there exist a substan-
tial number of equilibria in which the population is diverse, by solving a related problem on
stochastic matrices.

The rest of this report is structured as follows: In Section 2, we introduce the theoretical
background needed to understand the theory; in Section 3, we explain the main theorems of
the paper; and in Section 4, we explain our approach to simulating (and, hence, empirically
verifying) the results of the paper. Section 5 concludes the report.

2 Background

The field of population genetics is concerned with the distribution of genes in a population
over time. For our purposes, a gene represents a particular trait of an individual, and alleles
encode different expressions of that gene. For example, we might have a gene that controls
the eye color of a person, and there might be alleles encoding blue, green or brown eye colors.
A genotype represents one particular combination of alleles for all the genes of an individual.
In more abstract terms, we can think of a gene as a set Si = {a1, . . . , an} of alleles aj, and a
genotype g as an element of the cartesian product S1 × · · · × Sk for a species with k genes.

In this definition of a genotype, an individual carries exactly one allele for each gene; this
is called a haploid genotype. However, most species in nature carry two alleles for each gene
(one from each parent); the genotype is diploid. Models for diploid genotypes are generally
more cumbersome and less amenable to analysis, and this paper focuses on the haploid case.

In line with most papers in the field, this paper focuses on the case when k = 2, i.e. a
species with two genes. This is purely for notational convenience, as this allows us to express
all necessary terms as matrices rather than k-dimensional tensors; the results hold in the
general case also. A genotype can then be written as ij, where i ∈ [1, . . . , n] is the allele of
the first gene, and j ∈ [1, . . . ,m] is the allele of the second gene.

An important quantity in population dynamics is the fitness of an individual. In practice,
fitness depends on a variety of factors and can change over time. However, as a simplification,
the paper assumes that fitness depends purely on the genotype and is fixed with respect to
time. The fitness of an individual with genotype ij is then wij, and represents the expected
number of offspring this individual produces. We collect the fitness values of all possible
genotypes in the fitness matrix W .
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We are interested in how the frequency ptij of genotypes in the population evolves over
time. ptij represents the probability of encountering a particular genotype when picking an
individual at random from the population, and we have

∑
ij p

t
ij = 1. Of additional interest

is w̄t =
∑

ij p
t
ijwij, the “average fitness” of the population.

In addition to the genotype frequency, we can derive the marginals (i.e. the allele fre-
quencies) xti =

∑
j p

t
ij and ytj =

∑
i p

t
ij.

2.1 Population Dyamics

In order to reason about the evolution of genotype frequencies ptij over time, we require
a model of reproduction. Several such models exist; for example, the “selection without
recombination” (S) model corresponds to asexual reproduction, in which no new genotypes
are introduced in the population:

pS,t+1
ij =

ptijwij

w̄t
(1)

ptijwij is the expected number of offspring produced by individuals with genotype ij at time
t; dividing by the total number of offspring produced (w̄t) then yields a proper probability
distribution at time t + 1. We can easily see that over time, this reproduction model tends
towards a point distribution on the genotype ij with the highest fitness, as we would expect
from asexual production.

The reproduction model considered in this paper is called “selection before recombina-
tion” (or SR), in the sense that the number of offspring an individual produces depends
on the fitness of the individual. In contrast, in the “recombination before selection” (RS)
model, all individuals produce an equal amount of offspring, and the survival of the offspring
is dependent on their fitness. The difference between the models lies only in when selection
is applied - before or after reproduction.

In the SR model, the expected number of descendants of individuals with genotype ij is
ptijwij. Individuals will mate randomly with other individuals, subject to their frequency in
the population and their fitness scores. That is, the probability of choosing to mate with
an individual with genotype kl is ptklwkl/w̄

t; and therefore, the expected number of offspring
with parents ij and kl is ptijwij · ptklwkl/w̄

t.
An individual with genotype ij must have a parent with genotype iX and a parent with

genotype Xj. Summing over all possible such combinations and normalizing by the total
number of offspring produced yields the population dynamics of the SR model:

pSR,t+1
ij =

∑
k

∑
l p

t
ikwik · pljwlj

w̄t · w̄t
(2)

Other papers in this domain typically use a linear mixture of asexual and sexual reproduction
models with the “recombination factor” r:

pt+1 = pS,t+1 · (1− r) + pSR,t+1 · r (3)

This more faithfully captures organisms such as bacteria or certain flora, which are capable
of both sexual and asexual reproduction. However, this paper assumes that r = 1.
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2.2 Wright Manifold and Weak Selection

Theoretical analysis of population dynamics in the general case can be difficult, and this
paper relies on a number of assumptions to derive the main results. The main assumption
made is that evolution operates in the regime of weak selection; that is, the entries of the
fitness matrix W are all in range [1 − s, 1 + s] for some “small” s > 0, which is called the
selection strength.

This assumes that differences in fitness across individuals is small. This is quite a restric-
tive assumption, but the authors justify this choice by referencing the “neutral theory” of
evolution [3]. This theory states that at the molecular level, most mutations are “neutral” in
the sense that they do not affect an individual’s overall fitness. This assumption comes with
a few caveats, and we will revisit the consequences of this assumption later in this report.

Assuming weak selection allows the authors to invoke a powerful theorem by Nagylaki [6]
(eq. 53), which shows that the genotype frequency of a system in weak selection is equivalent
in the limit to the genotype frequency of a system on the Wright manifold. The Wright
manifold describes all population frequencies that can be written as an outer product, i.e.
pij = xi · yj, where x and y are the marginals of the genotype frequency. This is the main
reason why the authors restrict themselves to weak selection: Population dynamics on the
Wright manifold are much easier to reason about, and using Nagylaki’s theorem allows us
to generalize proofs for systems on the Wright manifold to systems in weak selection.

3 Analysis

With the notation established, we are now ready to look at the core statements of the paper.

3.1 Evolution and Coordination Games

In a two-player coordination game, both players have a set of strategies available that they
can play at each step, where the set of strategies might be different for each player. If the
first player uses strategy i, and the second player uses strategy j, they both receive a payoff
of ∆ij. Because payoffs are shared between players, they must coordinate; this is in contrast
to e.g. zero-sum games, where one player’s loss is the other player’s gain.

The first player will pick their strategy from a mixed strategy xt, which is a probability
distribution over the set of actions at round t of the game; analogously for the second player
and yt. The expected payoff of strategy i for the first player is

∑
j yj∆ij, and the total expected

payoff ∆̄t is trivially ∆̄t =
∑

ij xiyj∆ij. We can easily verify that the total expected payoff
is identical for both players.

How should the mixed strategy profile evolve over time? Consider now a multiplicative
update scheme: The ith entry of the mixed strategy profile is multiplied by a factor that
depends on the expected payoff of playing that strategy. This gives the update rule

xt+1
i =

1

Zt
· xti

(
1 + ε ·

∑
j

ytj∆ij

)
(4)
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where

Zt =
∑
i

xti

(
1 + ε ·

∑
j

ytj∆ij

)
= 1 + ε

∑
i

∑
j

xtiy
t
j∆ij = 1 + ε∆̄t (5)

is the normalization factor to bring xt+1 back to the probability simplex, and ε is the learning
rate. Inserting into (4) yields

xt+1
i =

1

1 + ε∆̄t
· xti

(
1 + ε ·

∑
j

ytj∆ij

)
(6)

An analogous equation exists for the second player and y.
So far, we’ve only utilized standard game theory and multiplicative updates. We will

now return to population dynamics, and consider the marginal allele distribution xt+1 for a
population on the Wright manifold (i.e. pij = xiyj):

xt+1
i =

∑
j

pt+1
ij (from definition of the marginal) (7)

=
1

w̄t · w̄t

∑
j

∑
k

∑
l

ptikwik · ptljwlj (from (2)) (8)

=
1

w̄t · w̄t

∑
k

ptikwik

(∑
l

∑
j

ptljwlj

)
(9)

=
1

w̄t

∑
k

ptikwik (10)

=
1

w̄t
xti
∑
k

ytkwik (assuming Wright manifold) (11)

Because we are operating in weak selection, we know that wij ∈ [1− s, s+ s]. Consider now
∆ij = (wij − 1)/s, which rescales the fitness values to be in [−1, 1]. We can easily see that
wij = 1 + s∆ij and w̄t = 1 + s∆̄t. Insert into Eq. (11) and obtain

xt+1
i =

1

1 + s∆̄t
· xti

(
1 + s

∑
k

ytk∆ik

)
(12)

This equation is identical to Eq. (6)! This means that we can interpret population dynamics
under SR-rules and weak selection as a coordination game where the genes are the players.
Each gene can play an allele as a strategy, and their total expected payoff is equivalent to
the average fitness of the population. The marginal allele frequencies are the mixed strategy,
and the learning rate is s, the selection strength.

In the paper, the authors use a different proof based on a transformation in a paper by
Livnat et al. [4]. The proof is somewhat opaque, and the transformation does not appear to
be in the paper they reference (this is possibly a typo). However, we can derive the proof
much more easily using algebraic manipulation, as shown above.
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3.2 Diminishing Regret

Establishing a link between population dynamics and MWU allows the authors to show
two things: First, that evolution in the weak selection regime converges; and second, that
evolution maximizes the mixability of a gene, which we will define shortly.

The authors use a theorem by Kale [2] for both proofs. However, we already analyzed a
very similar form of MWU in class for the experts problem, and we can draw similarities to
that analysis here for a better intuition. Pattern matching to the notation in class, we can
see that the MWU step for xt is the same as the experts problem with a loss of

li(t) = −
∑
j

ytj∆ij (13)

for action i. In class, we showed that the average regret after time T is O(lnm/T ); i.e. the
regret diminishes as T →∞. In other words, the marginal distribution over alleles that this
algorithm converges to is comparable in loss to the point distribution on the i that minimizes
the sum of li(t) over time.

Minimizing this loss is equivalent to maximizing mx(i) =
∑

j y
t
j∆ij. The authors call

this the mixability. It represents how well an allele performs in conjunction with all other
possible genotypes. Different to asexual reproduction, which converges on the allele that has
the highest maximum fitness, sexual production in the weak selection case converges on the
allele with the highest average fitness.

This partially addresses some of the questions about the role of sex in evolution: Breaking
apart successful gene combination was seen as a disadvantage of recombination, but it seems
like this is more of a feature: Alleles that work well on average are selected, rather than
those that work well in only a few cases.

3.3 Temporally Varying Fitness

With little additional effort, the same proofs can also be applied to the case when the fitness
varies (randomly) over time. Say that the fitness of genotype ij was actually w∗ij = wij + vtij,
where vtij are i.i.d. random variables with zero mean. The vtij must be chosen such that we
still operate in weak selection, i.e. it must be that wij + vtij ∈ [1− s, 1 + s].

Consider now ALG∗ (using the notation from class): It is

ALG∗ =
T∑
t=1

l∗i (t) (14)

= −
T∑
t=1

∑
j

ytj∆
∗
ij (15)

= −
T∑
t=1

∑
j

ytj
wij + vtij − 1

s
(16)

=
T∑
t=1

li(t)−
1

s

T∑
t=1

∑
j

ytjv
t
ij (17)
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and similarly for OPT. This is simply the standard loss plus a weighted average of vij values.
This means that the regret of this modified case is the same regret as the case when wij are
fixed, plus a term

1

s · T

T∑
t=1

∑
j

ytjv
t
ij (18)

We know that vij are zero-mean i.i.d. random variables, and that the process converges to
a stable distribution of ytj. Hence, we can apply the law of large numbers to conclude that
this term tends to 0 as T tends to infinity.

This gives us the same regret as in the case when the wij are fixed, meaning that the
same conclusions hold when the fitness values change slightly over time.

The proof in the paper follows a different approach, again referencing Kale [2]. The key
part of the proof is to show that the randomness becomes a simple additive term in the regret
and apply the law of large numbers. We therefore opted to reference the proof from class
instead to focus only on this key part of the derivation and avoid the other mathematical
details.

3.4 Diversity

The final corollary of the paper provides some evidence that evolution under recombination
can converge to an equilibrium that maintains diversity.

In the asexual case, we can easily see that the evolutionary process will converge on the
single genotype with the highest fitness scores. However, this is clearly not the case in nature:
Diversity is ubiquitous, and if we can show that sexual reproduction is likely to lead to a
diverse distribution of genes, it would significantly strengthen the role of sex in evolution.

The authors of this paper show that in the sexual reproduction case, there are exponen-
tially many equilibria where the equilibrium distributions x and y are not point distributions.
The proof in the paper is somewhat tedious, but we paraphrase parts of it and (hopefully)
provide more intuition for the important steps.

Remember that the mixability of gene x is defined as mx(i) =
∑

j yjwij, or in other

words, mx = Wy, and my = W Tx.
At the equilibrium, all non-zero entries of x (and similarly for y) must have the same

value; otherwise, x would change after one additional round of the update rule (Eq. (12)),
and it would therefore not be an equilibrium distribution (and similarly y).

This means that the probability distributions x and y are a valid equilibrium only if
Wx = a1 and W Ty = b1 for some non-negative constants a and b. Because some components
of x and y can be 0, we can write equivalent equations Ax′ = a1 and ATy′ = b1 for some
submatrix A of W , as long as the subvectors x′ and y′ induced by the submatrix A sum to
1 (i.e. the rows and columns we discard from W are not part of the equilibrium) and are
positive (i.e. we are not retaining rows/columns that don’t contribute).

We want to know how many equilibria there are where x and y are not point distributions.
For a submatrix A, the linear equations above tell us whether a valid equilibrium exists for
some x′, y′, a and b. Therefore, we only need to count for how many of the (non-trivial)
submatrices of W these linear equations are satisfied.
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This is difficult to answer in general, and the authors instead do a probabilistic proof:
They assume that the entries of W are random and drawn i.i.d. from [1− s, 1 + s]. Then the
problem reduces to computing the probability that a submatrix A fulfills these two equations.

The authors also assume that a > 1 and b > 1. This is because values smaller than
one lead to extinction: If

∑
j yjwij < 1, then certainly

∑
j xiyjwij < 1 for any i. However,

this is the expected number of offspring that carry allele i. This means that the number
of individuals carrying any allele shrinks at every reproduction cycle, and the population
eventually goes extinct. This is not a useful equilibrium, and the assumption is reasonable.

Because we operate in weak selection, we can write A = U + sB, where U is a matrix
of all 1s. Remember that we assumed the fitness matrix to be random, i.e. the entries of B
are i.i.d. in [−1, 1]. Then, A must be square with almost certainty, because otherwise one
of the equations Ax′ = a1 or ATy′ = b1 is overdetermined, and the probability that a linear
system of equations holds for a random matrix is almost zero. Hence, assume that A ∈ Rk×k

for some k > 1.
If we expand the linear equations, we get

Ax′ = a1 (19)

Ux′ + sBx′ = a1 (20)

1 + sBx′ = a1 (because x is a probability distribution) (21)

sBx′ = (a− 1)1 (22)

x′ =
a− 1

s
B−11 (23)

First, if an equilibrium exists for submatrix A, then B must be invertible. Furthermore,
because every element of x′ is positive and we assumed a > 1, it must be that the sum of
rows of B−1 is positive. A similar equation exists for y′, and hence the column sums of B−1

must also be positive.
What is the probability that a random matrix B is invertible and that its inverse has pos-

itive row and column sums? Unless the distribution of fitnesses is degenerate (i.e. discrete),
the probability that B is invertible is almost 1. However, it could be that the inverse of B
has negative row or column sums. But if this is the case, then we can “fix” it by modifying
B until it has the desired properties.

Say B−1 had a row/column with negative sum. We can make the sum positive by
“flipping” (i.e. inverting the signs of all values of) the row/column in B−1 (or conversely,
flipping the column/row in B). It may be that this has created more rows or columns with
negative sum. However, we know that the sum of the row/column before flipping was −σ,
for some σ > 0 (otherwise, we would not have flipped it). Therefore, flipping the row/column
increased the sum of all elements of B by 2σ. We can do this as long as there is a row or
column with negative sum.

Through a simple counting argument, we can see that there exist exactly 22k−1 distinct
matrices we can obtain from flipping rows and columns of B. One of these matrices must
have the largest sum of elements. Then, this matrix also has row- and column sums that are
all positive: If not, we could flip a row or column and increase the sum of all elements - but
this violates the maximum property.
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Hence, out of all 22k−1 possible permutations, at least one has positive row and column
sums. This is true for any B. If we assume that the probability distribution of elements of
B is symmetric around 0, then each of those permutations has equal likelihood; hence, the
probability of a random B having positive row and column sums is at least 2−(2k−1).

Putting all of this together, we can say the following: Assuming a random fitness matrix
W with values distributed i.i.d. in [1− s, 1 + s] and symmetrically around 1, the probability
that there exists an equilibrium on a submatrix A ∈ Rk×k of W is 2−(2k−1).

How many such submatrices are there? There are
(
n
k

)(
m
k

)
ways to pick a submatrix of

size k × k from W . Each of these has a probability of 2−(2k−1) of having an equilibrium;
then, the expected number of such matrices is(

n

k

)(
m

k

)
2−(2k−1) ≥

(n
k

)k (m
k

)k
2 · 4−k = 2

(n ·m
4k2

)k
(24)

In comparison, there are at most n ·m equilibria where x and y are a point distribution. This
means that the number of possible equilibria that predict diversity (i.e. k > 1) substantially
outnumber sparse equilibria.

4 Simulation

For the purposes of experimentally verifying the results of the paper, we wrote a simulation
which numerically calculates many years of evolution of a particular instance of a population
and fitness tensor.

The main process for the simulation is:

• Set the initial conditions for the starting population, and fitness tensor. Depending
on the type of experiment we want to run, we do this by filling them i.i.d. on some
interval (like [1− s, 1 + s], or by systematically setting them as we go iterate through
all possible values (within some small δ).

• Using equation 2 we iterate through some large number of generation ( 200) to see
what the long term effects of evolution are on the population

• Depending on the type of experiment we are running we print out population informa-
tion each year or only after a long period of time has occurred.

4.1 Experiment 1: How much does the initial population matter?

In section 2.2 we stated that population dynamics is much easier to study in the “Wright
manifold” (recall this is when the population frequency can be written as the tensor product
of the marginals of the genes: pij = xi⊗yj). How do these dynamics change when we violate
these conditions?

Consider the fitness tensor given by:

W =

(
2 .5
.5 2

)
(25)
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Note that this tensor does not fit into the idea of “weak selection.” Hence we have no
reason to believe Nagylaki’s theorem holds, and therefore we cannot claim that studying
the dynamics on the Wright manifold is sufficient. Through extensive testing of marginals
ranging from 0 (not present) to 1 (completely present) we find that there are only five equi-
librium population frequencies.

x = [0, 1] x = [1, 0] x = [α, 1− α] x = [α, 1− α] x = [α, 1− α]
y = [1, 0] y = [0, 1] y = [1− α, α] y = [1− β, β] y = [1− β, β]

0 < α < 1 0 ≤ α < β ≤ 1 0 ≤ β < α ≤ 1

(
0 1
0 0

) (
0 0
1 0

) (
.25 .25
.25 .25

) (
0 0
0 1

) (
1 0
0 0

)

Table 1: Table showing the equilibrium populations based on a fitness tensor given by 25
and the initial populations given by the first row. Notice that the first two equilibria are
“unstable” meaning that if the starting state is even slightly off from those conditions then
over time the system will tend towards on of the other equilibrium states. and that the
last two are “stable equilibria” meaning if the system is slightly off of that equilibria it will
correct itself.

What happens if we choose a initial population that is not in the Wright manifold? It
turns out out of millions of runs with randomly chosen starting states, every equilibria falls
into one of those five categories. While more equilibria could exist, if they do. they are most
likely unstable equilibrium with very specific starting conditions. One direction to push this
work further is to ask ourselves does this always hold?

4.2 Experiment 2: Diversity or Survival of only the Fittest?

The main result of this paper is that most instances of weak selection on the wright manifold
will converge to a diverse equilibria rather than a sparse one. This experiment seeks to verify
that result and expand upon it. Here we randomly choose an initial condition, and unlike in
the previous analysis we do not require that the initial state is in the wright manifold. We
chose a fitness tensor by randomly filling it’s entries i.i.d. on the interval [1−s, 1+s] for some
varying parameter s. After allowing evolution to pass after some large number of years 200
(we actually scale this number according to the size of the tensors we are dealing with so that
larger tensors will have more time to approach their end behavior) , we examine how many
entries in the population frequency tensor are above some small value (.001 divided by the
number of entries in the tensor). If this number is large then our population is fairly diverse
confirming the results of the paper, however if this count is small, then our population is
sparse and only filled with a few of the fittest gene combinations.

After a large number of tests we found that when s is large (not during weak selection)
the diversity was small, and as s got smaller the diversity blossomed. In fact, for 14 × 14
matrices (one of our larger test conditions) and s = 1

16
we found over half of our equilibrium
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states had more non-zero entries than close to zero entries! Figures 1 and 2 summarize these
results.

Figure 1: Histogram of final population with s = 1
2

and dimensions of 10 × 10. For this
value of the selection strength (s), we find that most of the end equilibria are very sparse,
and almost all counts of surviving gene combinations are clustered close to 0.

Figure 2: Histogram of final population with s = 1
16

and dimensions of 10 × 10. For this
value of the selection strength (s), we are operating within the bounds of weak selection and
the conditions for the previous analysis hold (with the exception of the starting conditions)
Unsurprisingly, we find the end equilibria are far more diverse with many gene combinations
still being viable even after many years of evolution.
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5 Conclusion

We closely investigated and explained the results of the work of Chastain et al. We’ve seen
how evolution under recombination and cooperative games with multiplicative updates are
identical if we assume weak selection. Furthermore, we have seen that in evolution under
recombination, the potential equilibria in which the population is diverse vastly outnumber
those where the population only has a sparse number of genotypes.

However, there are a number of assumptions that limit the scope of these results. The first
and most restrictive assumption is that evolution operates in the weak selection regime. The
authors base this on the “neutral theory” of evolution [3]. The issue with this assumption
is that the neutral theory states that the majority of variation in genome between existing
individuals of a species is explained by mutations in alleles that are selectively neutral, i.e.
do not change the fitness scores by much. However, this is not the same as saying that all
possible alleles (or mutations of alleles) have similar fitness scores; in fact, most mutations
will be deleterious and lead to immediate extinction of that mutation. Similarly, although
Kimura et al. claim that most changes in alleles are neutral, some may be advantageous
(or disadvantageous). Therefore, assuming that the fitness matrix is in some small interval
[1−s, 1+s] significantly restricts the scope of the results, since we would expect most entries
to be close to zero, some to be close to 1, and a few to significantly exceed 1.

Fortunately, follow-up work by Meir et al. [5] lifts this restriction, which significantly
broadens the applicability of these results.

Finally, although the proof of diverse equilibria is encouraging, it only holds under quite
significant assumptions: The fitness values must be random, i.i.d., distributed symmetrically
around zero; it only holds under weak selection and only for two genes; and finally, although
we can prove that many diverse equilibria exist, it is not clear how often these equilibria are
actually reached. Knowing that a large number of diverse equilibria exist is not sufficient -
it may be that the vast majority of initial conditions will converge to sparse equilibria only,
though our experiments have hinted that this is not the case.

In conclusion, this was a very interesting paper to read and although the derivations
were terse and sometimes hard to follow, I think the results are sound, especially in view of
the followup work that lifts the major restrictions. We believe we were able to explain the
derivations more clearly in the context of the class, and (hopefully) added some additional
value through research in related works.
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