
CS 49/149: 21st Century Algorithms (Fall 2018)
Paper: Optimal Auctions via the Multiplicative Weight Method

1 Auctions and Multiplicative Weight Update

New research in the field of mechanism design, traditionally a part of microeconomics and game
theory, has recently began to draw inspiration from algorithms in computer science research.
Many papers in this emerging sector of ”computational mechanism design” are concerned with
designing computationally feasible and economically feasible mechanisms to distribute resources
or penalties among different actors (Parkes, 2001). In general, the mechanism design problem
arises from a situation where a variety of actors compete for the same set of resources, but with
incomplete information about each other. In this auction setting, bidders and the auctioneer have
certain information only about their own preferences (expressed by type, utility, and valuation
functions), and have information about the strategy of other agents in the game only insofar as
other agents are willing to reveal their strategies. The goal of a good auction mechanism is to
generate the maximum amount of revenue for the auctioneer while ensuring fairness for the bid-
ders (for example, not somehow forcing the winning bidder double the winning bid). Other ex-
amples of constraints will be provided in section 2 of this summary. We will be examining this
paper, which leverages a general form of the multiplicative weight update algorithm to arrive at
an mechanism that exceeds individual bidder budgets by no more than an additive-ε error and is
generates no less than an additive-ε away from the optimal revenue for the auctioneer.

The algorithm proposed in ”Optimal Auctions via the Multiplicative Weight Method” (Bhalgat
et. al., 2013) is one such example of applying optimization algorithms to mechanism design. The
presented algorithm can be used to re-derive recent results results in the field (e.g. auctions with
multi-dimensional type spaces and allocation constraints), but also solves many different auction
problems where the only known previous solutions were approximation algorithms. Another ad-
vantage of this mechanism is that it is relatively simple and doesn’t depend on relating different
ex-interim variables (allocations, payments, etc.) but instead explicitly encodes all of this infor-
mation in the dual variables. In general, the proposed algorithm has runtime polynomial in n, the
number of buyers, m, the number of items being auctioned, 1

ε , the reciprocal of the error tolerance,
and the size of the types available to each buyer.

2 Constraints

In arriving at an optimal mechanism, we must ensure that several groups of constraints are satis-
fied. Some are related to the amount of revenue that can be generated by the mechanism, while
others are related to individual buyer behavior and mechanism resource allocation. We outline
each in subsections.

1

2.1 Fair Mechanism constraints

First, we present the set of constraints we refer to as ”fair mechanism constraints”, which con-
strains the possible allocation of the auctioned-off items. Here, xiq is an indicator function taking
1 if person i receives q items, vi is the valuation function, taking the number of items and a type
space and outputs a real number, m refers to the total number of items, andBi refers to the budget
of bidder i. Then,

xiq(t) ∈ {0, 1} ∀i, q (1)∑
q

xiq = 1 ∀i (2)∑
i

qxiq(t) ≤ m (3)∑
q

vi(q, ti)xiq(t) ≥ pi(t) ∀i, q (4)

pi(t) ∈ [0, Bi] ∀i (5)

These constraints are collectively referred to as F(t). All of these together ensure that the solution
mechanism is ’fair’ (i.e. doesn’t sell more items than the auctioneer owns, somehow charge a
bidder more than they bid, etc.).

2.2 Bayesian Incentive constraints and optimal revenue constraint

For constraints, we must also keep in mind the Bayesian Incentive Compatibility constraint, which
enforces the constraints over bidder behavior, where Ui is the utility function for bidder i, taking
in a true type and revealed type and outputting a real number (utility):

Ui(ti, ti) ≥ Ui(t′i, ti) ∀ti, t′i ∈ Ti
Ui(ti, ti) ≥ 0 ∀ti ∈ Ti

These two above constraints can be combined into the following constraint, referred to as the BIC
constraint, where Xiq(ti) is the probability that buyer i gets q items playing type ti, and Pi(ti) be
the expected payment of the same buyer playing type ti:∑

q

vi(q, ti)Xiq(ti)− Pi(ti) ≥
∑
q

vi(q, ti)Xiq(t
′
i)− Pi(t′i) ∀i, ti, t′i ∈ Ti (6)

We must also check to make sure our approximation generates the same amount of revenue as the
optimal mechanism for the auctioneer. The authors denote the optimal amount of revenue for any
given set of constraints as OPT . Thus, the last constraint can be denoted∑

i,ti∈Ti

fi(ti)Pi(ti) ≥ OPT (7)

where fi(ti) = the probability that the buyer i is of strategy type ti.

2

2.3 Equality Constraints

Finally, we must also enforce equality constraints, which make the mechanism consistent with
itself. The two constraints in this domain are as follows:

fi(ti)Xiq(ti) =
∑
t|ti∈t

µ(t)xiq(t)

fi(ti)Pi(ti) =
∑
t|ti∈t

µ(t)pi(t)

where ti is a particular strategy within t, a vector of reported strategies. The first constraint says
that the probability that buyer i is allocated q items under strategy ti times the probability of
buyer i playing strategy ti is equal to sum of the densities where ti is a strategy in t (since xiq is an
indicator function). Likewise, the second condition says that the expected payment from buyer i
after playing type i times the probability of choosing type i is equal to the sum of payments under
every type vector containing strategy type ti times the payments under those scenarios.

3 Oracle Subproblem

The efficiency of the overall algorithm requires us to solve the Oracle subproblem in an efficient
manner. Oracle(α, β) is the same as solving

max −
∑
i,ti∈Ti

fi(ti)

(∑
q

αiqtiXiq(ti) + βitiPi(ti)

)

+
∑
t

µ(t)

(∑
i

(∑
q

(aiqtixiq(t)) + βitipi(t)

))

subject to the same constraints as outlined above in section 2 (the mechanism and bayesian in-
centive/optimal revenue constraints). We notice that this problem breaks down into two separate
optimization problems, namely minimizing the quantity in the first line and maximizing the quan-
tity in the second line. The first optimization problem (i.e. minimizing the negative of the first line)
can be solved with Lagrangian multipliers. The authors have omitted the workings to the proce-
dure.

Let’s now examine this second optimization problem (i.e. maximizing the second line), con-
strained by F(t), which the authors denote A(α, β). A smart observation can be made about
A(α, β): βiti ≤ 0 =⇒ pi(t) = 0, and βiti > 0 =⇒ pi(t) = min{Bi, vi(q, ti)}. Then, we can
solve this problem in polynomial time via dynamic programming. We fill in a matrixA[i, k] where
A[i, k] := A(α, β) for buyers i through n and for 0 through k items. We fill in the table from the
nth person backwards, using the folowing rule:

A[i, k] = min
0≤j≤k

(A[i+ 1, k − j] + j × αijtiF + max{βiti ×min{Bi, vi(j, ti)}, 0})

3

4 Algorithm

Let L be a quantity bounding the absolute value of all payments (buyer budgets), valuations,
and utilities for any possible mechanism. We know that maxi |Ti| ≤ L, and thus the number of
equality constraints are bounded by 2nmL. The support for any type for a buyer is also bounded
by 1/L. Define αl, βl to be the dual variables in iterations 1...K when running MWU. Given an ε,
our procedure is as follows:

MECHANISM(T)

• run sampled multiplicative weight update algorithm (see below)

• set δ = ε
nmL and K = O(L

2 log(nmL)
δ2

)

• choose an integer l between 1 and K uniformly at random

• allocate items and payments according to the solution of A(αl, βl)

Claim: This mechanism yields an ε-BIC, ex-post individual rational mechanism such that a buyer
never pays more than their budget and expected revenue for the auctioneer OPT − ε

Proof. By the properties of the multiplicative update algorithm, each constraint in the set of equal-
ity constraints will have an error of at most ε/(nL). Since we have bounded vi(q, ti) by L for all
possible combinations of people and items, the error in each BIC constraint is bounded by ε/n,
and since payments are bounded by L as well, the revenue is at most ε away from optimal.

Note that each constraint in the set of equality constraints is exponential in the number of buy-
ers. We can relax each constraint in this set of constraints by δ = ε

mnL to produce the following
contraints:

Xiq(ti) ∈
∑

t|t∈t µ(t)xiq(t)

fi(ti)
± δ

Pi(ti) ∈
∑

t|t∈t µ(t)pi(t)

fi(ti)
± δ

To cut down on runtime, we use a sampled version of multiplicative weight update method which
runs in polynomial time:

SAMPLED MWU

• Sl := O(nmL3log(nmLK)/ε) samples from data. Let the size of this set be C.

• solve Oracle(αl, βl) using sampled version of equality constraints

• rest of weight updates are run the same as normal MWU (see Rui’s notes)

Before we prove correctness of this procedure, let us observe a lemma that will be helpful.

4

Lemma: With high probability (i.e. with probability ≥ 1 − 1/poly(nmLK/ε)), for all 1 ≤ l ≤ K,
we have: ∣∣∣∣∣

∑
t∈Sitil

xliq(t)

|Sitil|
−
∑l

t∈D|ti∈T µ(t)xliq(t)

fi(ti)

∣∣∣∣∣ ≤ δ∣∣∣∣∣
∑

t∈Sitil
x∗iq(t)

|Sitil|
−
∑l

t∈D|ti∈T µ(t)x∗iq(t)

fi(ti)

∣∣∣∣∣ ≤ δ

where x∗ denotes the feasible solution for the linear program with no slack

Proof. Let Aiti be the event that |Sitil| /∈ (1 ± ε)C × fi(ti), where C = O(nmL3log(nmLK)/ε) and
Nitil be the event that one sample isn’t of type Aiti . Fix i, ti, l. We apply Hoeffding’s bounds here:
P(1l

∑l
i=1(Nitil − E[Nitil]) ≥ t) ≤ 2exp(−2lt2). Using linearity of expectation, we notice that the

left hand side is the the deviation from C × fi(ti), which is the quantity we want to bound. Plug-
ging in εC × fi(ti) for t, we note that the right hand turns into a polynomial function of n,m,K,L
since C is a polynomial function of the same variables and fi(ti) ≥ 1/L. Using this and the fact
e−x ≤ x + 1, x > 0. Thus, P(Aiti) = poly(nmLK/ε) Thus, ∀i, ti, l, |Sitil| = Ω(nmL2K/ε) w.h.p.
(omitting lower order terms here).

xliq(t) is generated by solving A(αl, βl). Since Sl is chosen independently of previous rounds and
of αl, βl, the values for xiq(t) can be viewed as drawing values from a distribution parameterized
by αl, βl. As each xiq(t) ∈ {0, 1}, we can once again apply Hoeffding’s inequality and union bound
to prove the first equation.

The proof for the second equation is similar, noting that x∗iq(t) ∈ {0, 1} and sampling valuation
vectors is the same as sampling from distribution {x∗iq}. We can again apply Hoeffding’s inequality
and union bound. (The authors omit the full proof for all three of these).

Using this, the authors establish correctness of the algorithm by examining an arbitrarily chosen
constraint: ∑

t∈Sitil
xiq(t)

|Sitil|
−Xiq(ti) ≥ −δ ∀i, ti ∈ Ti

=⇒ 1

K
×
∑

1≤l≤K

(∑
t∈Sitil

xiq(t)

|Sitil|
−Xiq(ti)

)
≥ −δ − δ (General property of MWU)

=⇒
∑
i≤l≤K

∑
t∈D|ti∈t µ(t)xliq(t)/fi(ti)−X l

iq(ti)

K
≥ −3δ (above lemma)

=⇒
∑

t∈D|ti∈t

µ(t)
fi(ti)

×
∑

1≤l≤K

xliq(t)
K
−
∑

1≤l≤K

X l
iq(ti)

K
≥ −3δ

Which implies that the algorithm is ε-BIC with revenue OPT − ε.

5

References

Arora, S., Hazan, E., & Kale, S. (2012). The Multiplicative Weights Update Method: a Meta-
Algorithm and Applications. Theory of Computing, 8(1), 121-164.

Bhalgat, A., Gollapudi, S., & Munagala, K. (2013, June). Optimal auctions via the multiplicative
weight method. In Proceedings of the fourteenth ACM conference on Electronic commerce (pp.
73-90). ACM.

Parkes, D. C. (2001). Classic mechanism design. Iterative Combinatorial Auctions: Achieving Eco-
nomic and Computational Efficiency. Ph. D. dissertation, University of Pennsylvania.

6

	Auctions and Multiplicative Weight Update
	Constraints
	Fair Mechanism constraints
	Bayesian Incentive constraints and optimal revenue constraint
	Equality Constraints

	Oracle Subproblem
	Algorithm

