
A Multiplicative Weights Mechanism for Privacy-Preserving

Data Analysis

Roger A. Hallman
Roger.Hallman.TH@dartmouth.edu

Fall Quarter 2018

1 Introduction

We live in an ever-more interconnected society where Internet-connected devices are embedded into
objects which we interact with on a daily bases, and consequently transmit data about us and our
actions. This generated data often takes the form of statistical information and is stored in statistical
databases. One need not dig too deeply in the current news to find documentation of sensitive
statistical information being compromised, indeed data subject identification by statistical inference
is possible even when statistical data holders take reasonable steps to anonymize the data in their
possession. Statistical analysis of sensitive information can yield important benefits. For example,
this analysis may be used to inform public policy decisions or to help private businesses generate
revenue by improved targeting of advertisements. However, this information can be misused.

A protection against deanonymization by statistical inference, known as “Differential Privacy”
(DP), was presented by Dwork [4] in 2006, upon which a strong body of privacy research has been
built. At a high level, DP (the fundamentals of which are provided in Section 2) adds noise to query
answers to protect data subject privacy while also providing accurate answers. Among the central
questions of DP research is this tradeoff between utility and privacy and the number of queries which
can be optimally run. Early results suggested that sequences of differentially private queries that
were smaller in number than the individual data subjects in the database could be answered with
considerable accuracy. However, it was also shown that there were families of queries for which “too
many” queries could lead to privacy violations. Nonetheless, these query families could be run in a
privacy preserving manner if accuracy was sacrificed.

In general, there are two classes of mechanisms which attempt to optimize the number of queries
answered while preserving privacy and accuracy: Non-interactive and interactive mechanisms. Non-
interactive Mechanisms [2, 6] are characterized by a set of queries that is specified in advance. [2]
demonstrated a privacy-preserving, non-interactive mechanism for a predefined set C of counting
queries where error scaled logarithmically with the number of queries being answered. [6] presented
a non-interactive mechanism that ran in polynomial time in N and k, with error scaling roughly as(

1√
n

)
·ko(1). Both of these non-interactive approaches output a synthetic data base, (i.e., a database

of entries from the parent database where for each query, the fraction of data subjects who satisfy
the answer are within the error bound). Interactive mechanisms, on the other hand, relaxed the
requirement that query sets be predefined. [8] presented a method of answering interactive counting

queries where error scaled
(

1
3
√
n

)
·polylog(k), however this mechanism ran in super-polynomial time.

Some important questions about interactive mechanisms include:

1. Is there a polynomial time interactive mechanism with non-trivial error on all databases?

2. If such an algorithm exists, could its error scale to a sampling error of
(

1√
n

)
and grow only

logarithmically with k queries?

1

3. Do there exist interactive mechanisms that can match (or nearly so) the hardness results in
[6]?

4. Are there relaxations that will permit such an interactive mechanism to run in sub-linear or
poly-logarithmic time?

In this paper, we review a paper from Hardt and Rothblum entitled “A Multiplicative Weights
Mechanism for Privacy-Preserving Data Analysis” [7], which presented an algorithm that they call a
“Private Multiplicative Weights” (PMW) mechanism. The PMW answers affirmatively to questions
1-3 and makes progress on question 4. Moreover, the PMW runs in linear time and provides worst-
case accuracy guarantees.

The rest of this paper is organized as follows: Section 2 makes up for a significant shortcoming
of [7] by providing the reader with an introduction to DP. Section 3 presents the PMW mechanism
and theorems for its privacy and accuracy performance. [7] has (at the time of this writing) nearly
300 citations on Google Scholar–it is clearly highly regarded within the DP research community–and
Section 4 presents an overview of more recent papers that have built off of the present work.

2 Background Information

We provide background information on Differential Privacy which is a 21st Century development
with which readers may be unfamiliar. This background information is provided in part because the
paper that this report reviews does not do an adequate job of providing background information,
and assumes that the reader has at least a familiarity with the fundamentals of the topic.

2.1 Differential Privacy

Tore Dalenius [3] expressed the fundamental statement of data privacy in statistical databases:
Anything that can be learned about a respondent from the statistical database should be learnable
without access to the database. This was a longstanding challenge until Dwork’s seminal 2006 work
on DP [4], which provides security against probabilistic data subject identification. In this section,
we take a deeper dive into DP which ensures that individual data subjects assume no additional risk
by adding their information to a statistical database [5].

2.2 Formalizing Differential Privacy

Unless otherwise stated, we quote definitions, remarks, and theorems in the subsection from [4, 5].
Unless otherwise specified, the term “database” refers to a statistical database and a database D is
a set of rows. Given two databases, D1 and D2 differ in at most one element if one is a proper subset
of the other and the larger database contains exactly one additional row. A randomized function K
is the algorithm applied by the database curator when releasing information.

Definition 2.1. ε-differential privacy. A randomized function K gives ε-differential privacy if for
all data in sets D1 and D2 differing on at most one element, and S ⊆ Range(K),

Pr[K(D1) ∈ S] ≤ exp(ε)× Pr[K(D2) ∈ S]

The probability is taken over the coin tosses of K.

We hope that as long as K satisfies this definition, K would guarantee that no outputs would
become significantly more or less likely in the event that a data subject’s data was removed from D.
(There should be a similar guarantee if a new data subject’s data is added to D.) While DP is not an
absolute guarantee of privacy, it is a strong guarantee because it is a statistical property about the
behavior of K and is independent auxiliary available information or available computational power.
Moreover, such a mechanism K provides a guarantee of privacy even when an adversary possesses
knowledge of every other row of D. Dwork also claims that Definition 2.1 extends to data subject
groups within D (as well as the case when a single data subject contributes to multiple rows of D).

2

Given a “small” c > 1 data subjects, Definition 2.1 is modified by bounding the probability dilation
by exp(cε).

2.2.1 But how to find K?!?

Let f be a query function on D and a = f(D) be the answer of the query function. K adds
appropriately chosen random noise to a. Dwork provides two illustrative examples:

1. Simple – “Count the number of rows in D satisfying a given predicate.”

2. Complex – “Compute the median value for each column; if the Column 1 median exceeds the
Column 2 median, then output a histogram of the numbers of points in the set S of orthants,
else provide a histogram of the numbers in different set T of orthants.

The simple query outputs a vector of values, while the complex query is an adaptively chosen
sequence of two vector-valued queries and depends on the true answer of the first query. Moreover,
the complex query is also a function of the noise added by K.

2.2.2 Getting the noise right

ε-differential privacy is achieved by the addition of random noise, the magnitude of which is chosen as
a function of the largest change a single participant could have on the query function, the sensitivity
of f .

Definition 2.2. L1-sensitivity. Given a distribution on databases, D, and for f : D → Rd, the
L1-sensitivity of f is

∆f = max
D1,D2

||f(D1)− f(D2)||1

for all D1, D2 differing by at most one element.

L1-sensitivity is a property of the function and is independent of any particular database. Moreover,
many database queries (for instance, simple counts such as “how many rows have property P”) will
have small ∆f ’s, usually a ∆f ≤ 1. DP achieves its best results, succeeds at providing accurate
query results while minimizing the risk of data subject identification, when ∆f is small.
Kf is query-specific privacy function which computes f(X) adds noise according to a scaled

symmetric exponential distribution with variance σ2 , and described by the density function:

Pr[Kf (X) = a] ∝ exp(−||f(X)− a||1)

σ2

The privacy function Kf ’s distribution has independent, exponentially distributed random variables
as coordinates. Thus, Kf adds symmetric exponential noise to each coordinate of f(X). The exact
value of σ2 is determined by the following theorem (the proof of which is provided in [4]:

Theorem 2.1. For f : D → Rd, Kf gives
(

∆f
σ

)
-differential privacy. ε-differential privacy is achieved

by setting σ = ε
∆f .

Returning to the complex query in 2.2.1, the importance of choosing noise as a function of the
sensitivity of the entire query should be clear. Consider the case of histogram queries, in which the
domain of data elements is partitioned into k classes and the query’s true answer is the k-tuple of
the exact number of database points in each class. This is a set of k queries, each of sensitivity 1,
Theorem 2.1 guarantees that ε-differential privacy is achieved by using noise distributed according
to a symmetric exponential with σ2 = k

ε . However, given D1, D2, ||f(D1)− f(D2)||1 = 1, as only a
single cell of the histogram changes, it suffices to apply Theorem 2.1 and select d = k and ∆f = 1,
which adds noise with σ2 = 1

ε .

Remark. The authors in [7] generate their noise as a Laplacian distribution Lap(σ) centered at 0

with scaling σ and a corresponding density f(x) = e−
|x|
σ

2σ .

3

3 Main Conclusions

Now that an exposition on the fundamentals of DP has been provided, we are ready to describe the
PMW, as presented in [7], as well as prove its privacy and accuracy claims.

Definition 3.1. Private Multiplicative Weights (PMW) Mechanism. Parameters: A subset of the
coordinates V ⊆ U with |V | = M (by default V = U), intended number of rounds k ∈ N, privacy
parameters ε, δ > 0 and failure probability β > 0. Let

σ =
10 log

(
1
δ

)
4
√

logM
√
n · ε

η =
4
√

logM√
n

T = 4σ ·
(

log k + log

(
1

β

))
Input: A database D ∈ Un corresponding to a histogram x ∈ Rn
Algorithm: Set y0[i] = x0[i] = 1

M for all i ∈ V . In each round t ← 1, 2, ..., k, when receiving a
linear query ft, do the following:

1. Sample At ∼ Lap(σ). Compute the noisy answer ât ← 〈ft, x〉+At.

2. Compute the difference d̂t ← ât − 〈ft, x〉. If |d̂t| ≤ T , then set wt ← 0, xt ← xt−1, output

〈ft, x〉, and proceed to the next iteration. If |d̂t| > T , then set set wt = 1 and (a) for all i ∈ V ,

update yt[i]← xt−1[i] · e−η·rt[i], where rt[i] = ft[i] if d̂t > 0 and rt[i] = 1− ft[i] otherwise; (b)

normalize xt[i] ← yt[i]∑
i∈V yt[i]

; let m =
∑t
j=1 wj . If m > n ·

√
logM then abort and output a

‘failure’ message. Otherwise, output the noisy answer ât and proceed to the next iteration.

In more plain language, in each round t, a series of linear queries ft are presented over U and
xt denotes a fractional histogram (with domain(xt) = V ⊆ U , and |V | � |U |) computed in round t.
at is the true answer to query t, and ât denotes this same answer with noise added to it. dt is the
difference between at and the answer given by xt−1, d̂t is the difference between ât and the answer
given by xt−1. If |d̂t| / 1√

n
then t is a “lazy” round and wt = 0, otherwise t is an “update” round

and wt = 1. A lazy round, when |d̂t| is small, outputs ft(xt−1) and sets xt ← xt−1. An update

round occurs when xt needs to be improved (i.e.,|d̂t| is not small) using the PMW mechanism and
bringing x̂t “closer” to an accurate answer on ft. However, the number of update rounds must be
bounded to prevent privacy violations: if the number of update rounds in a series of queries grows
to be ' n, then the mechanism fails and terminates.

3.1 Proving PMW Utility

We present the two main theorems of [7], which support their claims of the PMW mechanism’s
utility guarantees. Theorems are presented first, along with explanations and remarks, while proofs
will come in subsections 3.1.1 and 3.1.2. These proofs rely on a series of lemmas which we will
present to sketch the proofs. The authors also provide an analysis of privacy guarantees for the
PMW mechanism, however we omit this analysis as it is not germane at present.

Theorem 3.1. Utility of the PMW. Let U be a data universe of size N . For any k, ε, δ, β > 0, the
PMW mechanism is an (ε, δ)-differentially private interactive mechanism. For any database of size
n, the mechanism is (α, β, k)-accurate for adaptive counting queries over U , where

α = O

 log
(

1
δ

)
4
√
N ·

(
log k + log

(
1
β

))
ε
√
n

 .

The running time in answering each query is N · poly(n) · polylog
(

1
β ,

1
ε ,

1
δ

)
.

4

PMW error is a function of N and k and grows at ≈
(

1√
n

)
·log k. Moreover, the PMW mechanism

can be used to generate synthetic databases with similar error and running times in a non-interactive
setting. In fact, in this environment, the PMW can achieve sub-linear or polylogarithmic running
times.

Definition 3.2. Smooth and Pseudo-Smooth Databases. A historgram x ∈ RU such that∑
u∈U xu = 1 and for all u ∈ U , xu ≥ 0 is ξ-smooth if, for all u ∈ U , we have xu ≤ ξ. That is, a

histogram or distribution y over U is ξ-smooth if, for every u ∈ U , the probability of u by y is at most
ξ. A histogram x ∈ RU such that

∑
u∈U xu = 1 and for all u ∈ U , xu ≥ 0 is (ξ, φ)-pseudo-smooth

with respect to a set C if there exists a ξ-smooth histogram x? such that |〈f, x〉 − 〈f, x?〉| ≤ φ.

Remark. The most straightforward method for obtaining a pseudo-smooth database is simply to
sample from a smooth histogram.

Theorem 3.2. Utility of the Smooth PMW. Let U be a data universe of sizeN . For any ε, δ, β, ξ, φ >
0, the PMW mechanism or an (ε, δ)-differentially private interactive mechanism. For any sequence C
of k interactive counting queries that are fixed in advance (i.e., non-adaptively), and for any database
of size n that is (ξ, φ)-pseudo-smooth with respect to C, the mecahnism is (α, β, k)-non-adaptively
accurate with resect to C, where

α = Õ

φ+
log
(

1
δ

)
4
√
ξN ·

(
log k + log

(
1
β

))
ε
√
n

 .

The running time in answering each query is ξN · poly(n) · polylog
(

1
β ,

1
ε ,

1
δ ,

1
ξ ,

1
φ

)
.

3.1.1 Proving PMW Performance and Accuracy

Definition 3.3. Potential Function. A target histogram in V is denoted x? ∈ RN and need not be
equal to x, nor known to the PMW algorithm. The Potential Function is defined as

Φt = RE(x?||xt) =
∑
i∈V

x?[i] log

(
x?[i]

xt[i]

)
.

Lemma 3.1. In each update round t, Φt−1 − Φt ≥ η〈rt, xt−1 − x?〉 − η2.

Remark. Lemma 3.1 quantifies the potential drop drop in terms of the penalty vector rt and the
parameter η using a multiplicative weights argument.

Definition 3.4. Query Error. err(x?, ft) = |〈ft, x?〉 − 〈ft, x〉|. If x? = x, then err(x?, ft) = 0.

Lemma 3.2. In each round t where |d̂t| ≥ T and |At| ≤ T
2 we have 〈rt, x? − xt−1〉 ≥ |〈ft, x〉 −

〈ft, xt−1〉| − err(x?, ft).

Remark. Lemma 3.2 connects the inner product 〈rt, x?−xt−1〉 with the error of xt−1 on ft, measured
with respect to the true histogram x. Combining Lemma 3.1 and Lemma 3.2, we arrive at Lemma
3.3, which is necessary to build Lemma 3.4.

Lemma 3.3. In each round t where |d̂t| ≥ T and At ≤ T
2 , we have Φt−1−Φt ≥ η

(
T
2 − err(x?, ft)

)
−

η2

Lemma 3.4. Utility for V = U . When the PMW mechanism is run with V = U , it is an (α, β, k)-
accurate interactive mechanism, where

α = O

 log
(

1
δ

)
4
√
N ·

(
log k + log

(
1
β

))
ε
√
n

 .

Remark. Putting the preceding lemmas together completes a proof for Theorem 3.1.

5

3.1.2 Proving Smooth PMW Performance and Accuracy

We first consider utility in the more general case where V ⊆ U .

Lemma 3.5. Let (f1, ..., fk) be a sequence of k linear queries. Take γ = infx? err(x?, ft) where x?

ranges over all histograms supported on V . When the PMW mechanism is run on V with the query
sequence above, and with threshold parameter T ‘ = T + γ, it is an (α, β, k)-non-adaptively accurate
interactive mechanism where

α = O

γ +
log
(

1
δ

)
4
√
N ·

(
log k + log

(
1
β

))
ε
√
n

 .

Combining Lemma 3.5 with Lemma 3.6 provides the proof for Theorem 3.2.

Lemma 3.6. Let U be a data universe and C be a collection of linear queries over U . Let x be
(ξ, φ)-pseudo-smooth with respect to C. Take α, β > 0, and sample uniformly at random (with

replacement) V ⊆ U so that M = |V | = f max

{
ξN · (log(1

β)+log |C|)
α2 , log

(
1
β

)}
. Then, with all but

β probability over the choice of V , there exists a histogram x? with support only over V such that

∀f ∈ C : |f(x)− f(x?)| ≤ φ+ α.

4 The PMW in More Recent DP Research

A brief search of Google Scholar shows that [7] has more than 200 citations and continues to influence
ongoing research in the field of Differential Privacy. We look at several more recent papers: [9, 1]

[9] explicitly builds upon the PMW mechanism, extending it to the case of convex minimiztion
and showing the capability to give accurate and differentially private solutions to exponentially many
convex minimization problems on a sensitive dataset. Unfortunately, the algorithm described in this
paper runs in exponential time over the dimension of data and there is probably no polynomial time
that takes as input a set of k arbitrary differentiable convex loss functions and outputs answers with
even 1

100 accuracy per query.
[1] demonstrates that the Johnson-Lindenstrauss transform can be efficiently applied as a non-

interactive mechanism to DP. Specifically, they apply their mechanism to cut queries, which treats
a database as a graph and asks how many edges cross a specific cut of the graph. The authors
note that the PMW mechanism (modified for cut queries), in contrast to their work, always answers
correctly with no multiplicative error and can support k adaptively chosen queries.

References

[1] Jeremiah Blocki, Avrim Blum, Anupam Datta, and Or Sheffet. The johnson-lindenstrauss trans-
form itself preserves differential privacy. In Foundations of Computer Science (FOCS), 2012
IEEE 53rd Annual Symposium on, pages 410–419. IEEE, 2012.

[2] Avrim Blum, Katrina Ligett, and Aaron Roth. A learning theory approach to noninteractive
database privacy. Journal of the ACM (JACM), 60(2):12, 2013.

[3] Tore Dalenius. Towards a methodology for statistical disclosure control. statistik Tidskrift,
15(429-444):2–1, 1977.

[4] Cynthia Dwork. Differential privacy. In Proceedings of the 33rd International Conference on
Automata, Languages and Programming - Volume Part II, ICALP’06, pages 1–12, Berlin, Hei-
delberg, 2006. Springer-Verlag.

[5] Cynthia Dwork. Differential privacy: A survey of results. In International Conference on Theory
and Applications of Models of Computation, pages 1–19. Springer, 2008.

6

[6] Cynthia Dwork, Guy N Rothblum, and Salil Vadhan. Boosting and differential privacy. In 2010
IEEE 51st Annual Symposium on Foundations of Computer Science, pages 51–60. IEEE, 2010.

[7] Moritz Hardt and Guy N Rothblum. A multiplicative weights mechanism for privacy-preserving
data analysis. In Foundations of Computer Science (FOCS), 2010 51st Annual IEEE Symposium
on, pages 61–70. IEEE, 2010.

[8] Aaron Roth and Tim Roughgarden. Interactive privacy via the median mechanism. In Pro-
ceedings of the forty-second ACM symposium on Theory of computing, pages 765–774. ACM,
2010.

[9] Jonathan Ullman. Private multiplicative weights beyond linear queries. In Proceedings of the 34th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pages 303–312.
ACM, 2015.

7

