
Scheduling Theory CO 454, Spring 2009

Homework 3
Due: June 18th, 2009

1. (6)
Run the dynamic programming algorithm done in class for (1||

∑
wjUj) for the following data.

Jobs 1 2 3 4 5
pj 2 3 1 2 2
dj 2 4 3 6 5
wj 3 4.5 1 2 3

2. (6)
In class, we saw a dynamic program to solve (1||

∑
wjUj) problem in time O(n

∑
j pj). Give a

dynamic programming algorithm to solve the problem in time O(n
∑

j wj). (Hint: Construct
a table with entries indexed by items and weight with T [i,W] indicating a feasible subset of
weight exactly W having minimum total processing time.)

3. (2+2+2) For each of the statements, write true or false giving reasons.

• If X ≤P Y and Y ≤P Z, then X ≤P Z.
• If X ≤P Y and Y is NP-hard then X is NP-hard.
• Let X be a problem in the class NP. If P 6= NP , then X cannot be solved in polynomial

time.

4. (3+3)

(a) The HPP (Hamiltonian path problem) is the following: given a graph G is there a
simple path which contains every vertex of G. Recall that HCP (Hamiltonian cycle
problem) was given a graph G, if there is a cycle containing each vertex of G. Show that
HCP ≤P HPP . (Hint: Think what happens in the HPP problem if there is one vertex
of degree 1. What happens if there are two vertices of degree 1.)

(b) In class we saw that HCP ≤P TSP which showed that TSP was NP-hard. Show that it
is NP-hard to obtain a tour of total length at most βC∗ for any β > 1, where C∗ is the
length of the optimal tour.

5. (a) (3)
Show that the problem (1|rj |Lmax) is NP-hard by reducing the partition problem done
in class to it. (Hint: Given an instance of the partition problem, construct an instance
of jobs with release dates such that if there is a partition no job is late, if there is no
partition, at least one job is late)

(b) (3)
The above only shows that (1|rj |Lmax) is weakly NP-hard since partition is only a weakly
NP-hard problem. Show that (1|rj |Lmax) is strongly NP-hard by reducing Bin Packing,
which is a strongly NP-hard problem, to it.

Bin Packing: Given k items with sizes (a1, . . . , ak) and t bins each of capacity B,
can one partition the items into the t bins such that the total size of the items in any bin
is at most B.

(Hint: Given an instance of Bin Packing construct an instance with k + (t − 1) jobs,
where the first k jobs correspond to the sizes and the last (t− 1) jobs “partition” the jobs
into bins.)

1

