Homework 3

Due: June 18th, 2009

1. (6)

Run the dynamic programming algorithm done in class for $(1||\sum w_j U_j)$ for the following data.

Jobs	1	2	3	4	5
p_j	2	3	1	2	2
d_j	2	4	3	6	5
w_j	3	4.5	1	2	3

2. (6)

In class, we saw a dynamic program to solve $(1||\sum w_j U_j)$ problem in time $O(n\sum_j p_j)$. Give a dynamic programming algorithm to solve the problem in time $O(n\sum_j w_j)$. (Hint: Construct a table with entries indexed by items and weight with T[i, W] indicating a feasible subset of weight exactly W having minimum total processing time.)

- 3. (2+2+2) For each of the statements, write true or false giving reasons.
 - If $X \leq_P Y$ and $Y \leq_P Z$, then $X \leq_P Z$.
 - If $X \leq_P Y$ and Y is NP-hard then X is NP-hard.
 - Let X be a problem in the class NP. If $P \neq NP$, then X cannot be solved in polynomial time.
- 4. **(3+3)**
 - (a) The HPP (Hamiltonian path problem) is the following: given a graph G is there a simple path which contains every vertex of G. Recall that HCP (Hamiltonian cycle problem) was given a graph G, if there is a cycle containing each vertex of G. Show that $HCP \leq_P HPP$. (Hint: Think what happens in the HPP problem if there is one vertex of degree 1. What happens if there are two vertices of degree 1.)
 - (b) In class we saw that $HCP \leq_P TSP$ which showed that TSP was NP-hard. Show that it is NP-hard to obtain a tour of total length at most βC^* for any $\beta > 1$, where C^* is the length of the optimal tour.
- 5. (a) **(3)**

Show that the problem $(1|r_j|L_{max})$ is NP-hard by reducing the partition problem done in class to it. (Hint: Given an instance of the partition problem, construct an instance of jobs with release dates such that if there is a partition no job is late, if there is no partition, at least one job is late)

(b) **(3)**

The above only shows that $(1|r_j|L_{max})$ is weakly NP-hard since partition is only a weakly NP-hard problem. Show that $(1|r_j|L_{max})$ is strongly NP-hard by reducing BIN PACKING, which is a strongly NP-hard problem, to it.

BIN PACKING: Given k items with sizes (a_1, \ldots, a_k) and t bins each of capacity B, can one partition the items into the t bins such that the total size of the items in any bin is at most B.

(*Hint: Given an instance of* BIN PACKING construct an instance with k + (t - 1) jobs, where the first k jobs correspond to the sizes and the last (t - 1) jobs "partition" the jobs into bins.)