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We now show how to prove NP-hardness by illustrating it on 3 NP-hard scheduling problems.

1 (P2||Cmax)

We show this by reducing Partition to (P2||Cmax). Recall in Partition we have n
numbers {a1, . . . , an} such that

∑
ai = 2B. The goal is to decide if there is a subset S such

that
∑

x∈S x = B?
Given an instance of partition, construct an instance of (P2||Cmax) with n jobs, and job

j having processing time pj = aj .

Claim 1.1. The makespan of the above instance is B iff there exists a partition of the
numbers.

Proof. If there is a partition S which adds up to B, then the remaining numbers also add
up to B. Thus, scheduling jobs corresponding to the numbers in S on machine 1 and the
remaining jobs in machine 2 gives a makespan of B.

If the makespan is indeed B, then since the sum of processing times is 2B, both the
machines must finish at time B. Thus, the set of jobs on any machine forms a partition.

2 (1|prec|
∑

Uj)

We show that (1|prec|
∑
Uj) is NP-hard by reducing Clique to it. Recall that Clique

problem was given a graph G and a value c, if there was a clique of size exactly c in G. A
clique in a graph is a set of vertices such that there is an edge present between each pair of
vertices.

Let G = (V,E) be a graph with k vertices and m edges and let c be the size of clique
we are looking for. A clique has ` = 1

2c(c− 1) edges.
We build an instance of (1|prec|

∑
Uj) with n = k + m jobs. There are two kinds of

jobs, a vertex job corresponding to each vertex and anedge job corresponding to each edge.
The processing time of each job j is pj = 1. The due dates of the jobs j corresponding to
vertices are dj = k + m and the due dates of jobs i corresponding to edges are di = c + `.
For every triple of jobs u, v vertex jobs and (u, v) edge job, there is a precedence constraint
u→ (u, v) and v → (u, v).

Lemma 2.1. There exists a schedule with exactly m − ` late jobs iff if G has a clique of
size c.

Proof. First note that in any idle-time free schedule, the jobs corresponding to vertices will
always be on time.
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Suppose G has a clique of size c. Let S be the set of c vertices in the clique. Consider
the schedule where the corresponding c jobs are scheduled first (in any order) followed by
the ` jobs corresponding to the edges in this clique (in any order). The time for these jobs
to complete is c+`, so all the jobs in this set meet their deadline. The only jobs that cannot
meet their deadline are the jobs corresponding to edges not in the clique. There are m− `
such jobs.

To prove the reverse, we consider the contrapositive. (This is slightly different from
what we did in class). Suppose G has no clique of size c. Consider any set of ` edge-jobs.
Let T be the set of node-jobs corresponding to the endpoints of the edge-jobs. Then |T | > c,
because these edges cannot form a clique. In order to schedule these ` jobs, the jobs in T
must be scheduled first. Then at least one of the ` jobs will be late. The number of late
jobs is therefore at least m− `+ 1.

3 (F3||Cmax)

In class, we showed that (F3||Cmax) was weakly NP-hard by reducing it from Partition.
We show that F3||Cmax is strongly NP-hard by reducing 3-partition to (F3||Cmax).

Recall the 3-partition problem: Given positive integers a1, . . . , a3t, such that
∑3t

j=1 aj =
tB and B

4 < aj <
B
2 ∀j and, is there a t-partition of {a1, . . . , a3t} into three-element subsets

S1, S2, . . . , St such that
∑

x∈Si
x = B ∀i?

Note that if we show that there is a set S which contains elements summing to B, then
it must contain 3 elements. This follows from the assumption on the aj ’s. Therefore it is
enough to just partition without bothering about the number of elements in the set.

We build an instance of F3||Cmax. We have two kinds of jobs. There are 3t jobs
α1, α2, . . . , α3t corresponding to the 3t numbers. There are t+1 auxiliary jobs β0, β1, . . . , βt−1, βt.
The processing times are as follows.

Jobs β0 β1 ... βt−1 βt α1 ... α3t

Machine 3 2B 2B ... 2B 0 0 ... 0
Machine 2 B B ... B B a1 ... a3t

Machine 1 0 2B ... 2B 2B 0 ... 0

Lemma 3.1. There is a schedule of makespan (2t+ 1)B iff there is a 3-partition.

Proof. Suppose we only want to schedule jobs β0, β1, . . . , βt. If we schedule them in the
order β0, β1, . . . , βt, there is no idle time on machine 1, there are gaps of size B after every
job on machine 2 and there is no idle time on machine 3 after time B. The makespan of
this schedule is given by the completion time of machine 3: B + 2Bt = (2t+ 1)B.

Note that a makespan of value < (2t + 1)B cannot be achieved for these t + 1 jobs:
Each of these jobs will incur a delay time of B at the start on machine 3 and the sum of
processing times on machine 3 is 2tB.

The question is: can we schedule the remaining 3t jobs without increasing the makespan?
Since the processing time of these jobs on machine 1 is 0, we can schedule these jobs right at
the start of the schedule without affecting the makespan. Likewise, we can schedule these
3t jobs at the end of the schedule on the third machine without affecting the makespan. As
a result, we can schedule these jobs whenever we want on machine 2.
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On machine 2, there are t gaps of idle time of length B each. So, if there is a way to
split these jobs into these gaps, then there is a t-partition such that each set of jobs has
processing time ≤ b. Since the sum of these 3t processing times is tB, each set must have
total processing time B. Therefore, there is a solution to the 3-partition problem.

If there is a solution to the 3-partition problem, then there is a t-partition of the numbers
into 3-element subsets such that each set has sum equal B. These 3-element subsets will fit
into the gaps in our schedule.
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