
Scheduling Theory CO 454, Spring 2009

Lecture 13: List Scheduling Algorithms

June 16th, 2009

Last class we saw a list-scheduling algorithm for minimizing makespan in identical paral-
lel machines with no side-constraints, and proved that it is a (2−1/m)-factor approximation
algorithm. In this class, we look at two more applications of list scheduling to minimize
makespan in identical machines with precedence constraints, and to minimize makespan in
an open shop.

1 (P |prec|Cmax)

We saw two lower bounds on OPT last class. We need another lower bound for (P |prec|Cmax).
Let (j1, . . . , j`) be a set of jobs such that (j1 → j2 → · · · → j`) are the precedence

constraints. Since job ` can start only after jobs (1, . . . , ` − 1) finish, the completion time
of job ` is at least (p1 + · · ·+ p`), and this is a lower bound on OPT .

OPT ≥
∑̀
i=1

pji , for all (j1 → · · · → j`)

Now we are ready to give the list scheduling algorithm for (P |prec|Cmax).

Fix any ordering of the job. Whenever a machine becomes free, process the
earliest available job in this order.

Theorem 1.1. Let S be the schedule returned by the above list scheduling algorithm. Then,
CS

max ≤ 2OPT .

Proof. Let ` be the job which is finishes last. Let t` be the time when the job was started.
Let ` − 1 be the job which precedes ` and finishes last, and suppose it starts at time t`−1.
By definition, t` ≥ t`−1 + p`−1. Similarly, let job j, for j < ` be the job which finishes last
among jobs which precede job j + 1, and let tj be the time at which job j starts processing.

So we get a series of jobs (1, 2, . . . , `) such that no job precedes job 1 and (1 → 2 →
· · · → `). Note that by the lower bound above, OPT ≥

∑`
j=1 pj .

The crucial observation is the following: For any 1 ≤ j < `, between times (tj + pj)
and tj+1, all the m machines must be busy. Otherwise, job (j + 1) could’ve been processed
earlier. The same is true between time 0 and t1. Since these machines can be made busy
only by jobs, we get

m · (t1 +
`−1∑
j=1

(tj+1 − (tj + pj))) ≤
∑

j

pj ≤ m ·OPT

Rearranging, we get

1

t1 +
`−1∑
j=1

(tj+1 − tj) ≤ OPT +
`−1∑
j=1

pj

giving us t` ≤ OPT +
∑`−1

j=1 pj , and adding p` to both sides, we get

Cmax ≤ OPT +
∑̀
j=1

pj ≤ 2OPT

2 (O||Cmax)

We now look at the application of list scheduling to minimize makespan in an open shop.
Recall in an open shop, each job j needs to be processed in each machine i, and takes time
pij on it. There are no restrictions on the processing order.

What is a lower bound on OPT in this case? We now have

OPT ≥
m∑

i=1

pij , ∀j

since every job must be processed on each machine. Furthermore, each machine must
process every job and so we get

OPT ≥
n∑

j=1

pij , ∀i

Now consider the list-scheduling algorithm which processes any unprocessed operation
of a job on a free machine. Let M be the machine which finishes last, and let ` be the job
which it finishes last. The observation is the following: at any point of time either machine
M is busy or some operation of job ` is being performed. If neither, then the unprocessed
operation of job ` would’ve been performed on machine i.

Therefore, Cmax ≤
∑m

i=1 pi` +
∑n

j=1 pMj ≤ 2OPT .

2

