
Scheduling Theory CO 454, Spring 2009

Lecture 15,16,17: Factor 2 approximation for (R||Cmax)

June 30th, July 2nd, 7th, 2009

In the three lectures, we looked at a factor 2 approximation for minimizing makespan in
unrelated machines. We used linear programming techniques to get the algorithm, and
I suggest looking back into your CO350 notes for a quick brush-up on LP theory. The
theorem that we will need is the following.

Theorem 0.1. Given a polytope {Ax ≥ b, x ≥ 0} where A has m rows (constraints) and
n columns (variables), and let x be a basic feasible solution in the polytope, then x has at
most m non-zero entries. This theorem makes sense only if the number of constraints is
smaller than the number of variables.

1 IP formulation

We start with an integer programming (IP) formulation for the problem. For every machine
i and every job j, we have variable xij ∈ {0, 1} with the following semantic: xij = 1 iff job
j is processed on machine i, in the optimum schedule. Note that given such xij ’s, the total
load on machine i is

∑n
j=1 pijxij . We also have a variable C to denote the makespan. The

IP is as follows:

Minimize C (1)

∀i :
n∑

j=1

pijxij ≤ C

∀j :
m∑

i=1

xij = 1

∀i, j : xij ∈ {0, 1}

The objective says we want to minimize makespan. The first constraint says that the
makespan is at least as large as the total processing time on any machine. The second
constraint says that every job must be processed in some machine. The last constraint says
that xij is either 0 or 1.

Theorem 1.1. The value of the IP equals the optimum makespan.

Proof. Given a schedule S, we can construct a solution to the IP of value CS
max. This shows

val(IP) ≤ OPT . To see this, set C = CS
max and xij = 1 if i processes j and 0 otherwise.

Conversely, given a solution to the IP of value C, one can construct a schedule with
makespan C implying OPT ≤ val(IP). To see this, process job j on machine i iff xij = 1.
The second constraint implies that exactly one of the xij ’s corresponding to a job is 1 and
thus each job is processed on exactly one machine.

1

2 LP relaxations and Integrality gaps

As is expected, it is NP-hard to solve IPs. However, if we replace the constraint xij ∈ {0, 1}
by xij ≥ 0 in (1), we get a linear program, LP, which we can solve in polynomial time. In
fact, we can find an optimal basic feasible solution in polynomial time. This LP is called
the LP-relaxation of the IP.

The scheme to get an approximation algorithm is as follows. We construct the IP given
the scheduling instance. From the IP we get the LP relaxation, LP, which we solve in
polynomial time. Note that

val(LP) ≤ val(IP) = OPT

The hope is if one can construct a schedule S with makespan Cmax such that Cmax ≤
α · val(LP), then one gets an α-factor approximation algorithm. This is because of the
following string of inequalities

Cmax ≤ α · val(LP) ≤ α · val(IP) = α ·OPT

There is an inherent bottleneck to this approach. Given instance I of a scheduling
problem, let OPT (I) denote the optimum makespan for that instance, and IP (I) and LP (I)
be the corresponding IP and LP relaxation for that instance. We claim that if OPT (I)

LP (I) > α,
then there is no α-approximation possible by the above method. This is because no matter
what schedule we return, Cmax of our schedule will have Cmax ≥ OPT (I). If we further
have Cmax ≤ α ·val(LP (I)), then we will get OPT (I)

LP (I) ≤ α countering our premise. Thus, the
above discussion shows that the best possible factor one can hope using the LP relaxation
for instance I is at most OPT (I)

LP (I) . Since our approximation algorithm must satisfy the
approximation ratio for all instances, the best possible factor using this LP relaxation is

max
instances I

OPT (I)
LP (I)

This supremum is called the integrality gap of the LP-relaxation; and one cannot get an
approximation factor better than the integrality gap using just the LP relaxation as a lower
bound on the optimum.

How bad can the integrality gap be for the LP relaxation of (1)? We now show an example
of an instance I such that the fraction OPT (I)

LP (I) ≥ m, the number of machines. This will
show that the integrality gap is at least m, and therefore one cannot get a constant factor
approximation algorithm using this LP relaxation.

Example 2.1. Consider a single job j and m machines 1, 2, · · · ,m. The job j takes time
pij = m on each machine. Thats the instance I. Note that OPT (I) = m since the job must
be processed on some machine. However LP (I) ≤ 1, since we show a feasible fractional
solution of value 1. This is obtained by setting xij = 1

m for every i = 1 to m.

3 A sequence of LPs and a factor 2 approximation

The above example shows what is wrong with the LP relaxation. The value of the LP, which
is supposed to be the makespan, was 1, although the job took much longer time on any of
the machines. In particular, we haven’t used the following lower bound on the makespan

2

If job j is processed on machine i by the optimum solution, then we have OPT ≥
pij .

However, we do not a priori know which machine processes which job (in fact that is
what we want to find out), so the above seems to be a difficult constraint to encode for the
IP. The way that this is taken care of is the following. Suppose we actually knew the value
of the optimum makespan. Say it was C. Then, we know that jobs j which on machine i
have processing time pij > C, will not be processed on machine i. For these (i, j) pairs, we
can set xij = 0, explicitly. Maybe, then, the LP relaxation will not have a bad integrality
gap.

Nevertheless, this seems to be weird since we do not know the optimum makespan
value. The main insight is the following: we can still “guess” it. We know that the optimal
makespan is at least 1 (assuming integral processing times) and at most npmax, where pmax

is the maximum processing time of any job on any machine. Thus, if we had a procedure
which given a guess on the optimum, say C, either returns a feasible schedule of makespan
at most α · C, or it proves that the optimum makespan is larger than C, then we could
perform a binary search to obtain an α-factor approximation. We now show that a modi-
fied LP as the LP relaxation of (1) suffices as a procedure for α = 2.We now give the details.

Given a parameter C, let SC := {(i, j) : pij ≤ C}. Define the following linear polytope

LPC := {∀i :
n∑

j=1

pijxij ≤ C

∀j :
∑

i:(i,j)∈SC

xij = 1

∀i, j : xij ≥ 0}

Firstly note that for C = OPT , LPC is feasible. This is similar to the reason why the value
of the above IP was equal to the optimum. Therefore, if for some C, we get that LPC is
infeasible, then C < OPT , and we know that our guess, C, is too low. We will prove the
following theorem later.

Theorem 3.1. If LPC is feasible for any C, then one can find a schedule with makespan
at most 2C in polynomial time.

Now we can state the algorithm.

1. Initialize L = 1 and U = npmax.

2. While U − L > 1, do:

• Let C := (L+U)
2

• If LPC is feasible, then U = C.

• If LPC is not feasible, then L = C.

3. Let C∗ be the final C. Note it is the minimum C such that LPC is feasible. Now use
the Theorem 3.1 to get a schedule of makespan at most 2C∗.

3

Theorem 3.2. The above algorithm runs in polynomial time and returns a schedule with
makespan at most 2OPT

Proof. The algorithm runs in time log(npmax) · T1 + T2, where T1 is the time taken to solve
LPs and T2 is the time taken to run the algorithm in Theorem 3.1, which is a polynomial.
The proof completes by noting that C∗ ≤ OPT since LPOPT is feasible.

4 Proof of Theorem 3.1

Let x∗ be a basic feasible solution for LPC . We now use x∗ to construct the schedule with
makespan at most 2C. Let E∗ := {(i, j) : x∗ij > 0}. By LP theory, we have that |E∗| is at
most the number of constraints, which is (n+m). Construct the following bipartite graph
G = (V,E∗) where there is a vertex for every machine i and job j, and there is an edge
(i, j) if (i, j) ∈ E∗.

We first claim that we may assume that the graph G(V,E∗) is connected. Suppose not.
Suppose there are two components (V1, E1) and (V2, E2). But then, thinking of the vertices
as jobs and machines again, we will have two separate machine scheduling problems for
which LPC is feasible. By “induction”, we can solve them separately since they are smaller
problems, and get a schedule for them separately, each of makespan at most 2C. Thus, we
may assume there is only one component in G. Since G is connected and has |E∗| ≤ |V |, G
is either a tree or a tree plus an edge. In particular, G can have at most one cycle.

Call a job j a leaf job if it has degree 1 in the graph G. Let machine i be a parent of
leaf job j if the edge (i, j) is the only edge incident on j. Note that x∗ij = 1 for a leaf job j
and its parent machine i. This is because for every job j we have

∑
i:(i,j)∈E∗ x∗ij = 1. Let

Ji be the leaf jobs connected to a machine i. We process all jobs in Ji on machine i. Note
that for any i, we have ∑

j∈Ji

pij =
∑
j∈Ji

pijx
∗
ij ≤ C

where the first inequality follows since j is a leaf job and the second from the LPC constraint.

Delete all leaf jobs from G to get the graph G′. Now every job j in G′ has degree at
least 2. Now do the following procedure

• Let M be an empty set.

• While G′ is a single cycle or empty do

1. Find a machine i with degree 1. Let j be the machine it is connected to. Add
(i, j) to M . Delete the vertex i and j from G′. If any machine i has degree 0,
delete it as well.

• If G′ is a cycle, find a matching M ′ in the cycle matching each job to a unique machine.
Let M = M ∪M ′.

• For each job j, assign it to the machine i with (i, j) ∈M .

4

We claim that the above procedure either ends with an empty graph or a single cycle.
Firstly note that if G′ is neither a single cycle nor empty, then it must have vertices of
degree 1. Since all jobs have degree at least 2, this much be a machine. Also, deleting this
machine i, and deleting the unique job connected to it doesn’t decrease the degree of any
other jobs. So we can repeat this procedure, till we get a cycle or an empty graph. If a
cycle, we find another matching M ′ to augment M . In the end, every job is paired to a
unique machine.

Thus, every machine i has total processing
∑

j∈Ji
pij +pij(i) where j(i) is the job assigned

to machine i in the above procedure. if no job is assigned, let pij(i) = 0. The first term in
the sum is at most C. The second term is also at most C since (i, j(i)) ∈ SC). This proves
the theorem.

5

