
Scheduling Theory CO 454, Spring 2009

Lecture 19,20,21: Shop Scheduling Problems

July 14th,16th, 21st 2009

In the next three lectures, we will look at shop scheduling problems. We will be interested in
minimizing the makespan. To recall, in a shop scheduling problem, we have n jobs, but each
job has m operations corresponding to the m machines. Different operations take different
times. A job is said to have been completed iff all its operations have been completed. The
various shop scheduling problems puts restrictions on how these operations can be scheduled
on the various machines. There are three main kinds:

• Flow Shop: In this, the operations of each job must be processed in the same order
on the machines. The order is assumed to be (1, 2, . . . , n). The problem is denoted as
(F ||Cmax).

Furthermore, if there is a restriction that every machine must also process the jobs in
the same order, we call the restriction permutation flow shop denoting the problem as
(F |prmu|Cmax).

• Job Shop: This is a generalization of flow shop in which every jobs comes with its
own order in which it needs to be processed on the machines.

• Open Shop: In this, there is no restriction on the order in which the operations need
to be processed on the machines.

1 Flow shop with 2 machines

All the shop scheduling problems are solvable if there are 2 machines. We only saw the flow
shop version in class. The other two could be a nice question in the finals.

We first start with the following claim.

Claim 1.1. In the case of 2 machines, the optimal makespan for the flow shop problem is
same with or without the permutation constraint.

Proof. Call a pair of jobs (j, k) bad if they are not processed by both machines in the same
order. Let S be an optimal schedule with the minimum number of bad pairs. If we show
that there are no bad pairs, then we are done. Suppose for a contradiction that there is
a bad pair (j, k). Let job k immediately precede job j on machine 1 such that job k is
processed after job j on machine 2.

Let S′ be the schedule obtained from S by swapping jobs j and k on machine 1 and
having all other jobs remain in the same order. Note that S′ is a feasible schedule: job j is
processed earlier on machine 1, so is still completed before job j starts on machine 2; job
k does not start on machine 2 until after both jobs j and k are completed on machine 1.
Swapping the order of jobs j and k means that job k still does not start until after job k
ends.

1

Note that the completion times of the jobs on machine 2 do not change, and so the
makespan does not change. Thus, we get another optimal schedule with less number of bad
pairs contradicting our choice.

Therefore, we need to find a permutation of the jobs which minimized makespan. The
algorithm is as follows, and is called SPT (1)-LPT (2).

1. Let J1 := {j ∈ J : p1j ≤ p2j} be the set of jobs which have no more processing time
on machine 1 than on machine 2. Let J2 := J \ J1, be the remaining jobs.

2. The permutation in which the jobs are to be scheduled is as follows. Schedule jobs of
J1 in SPT of their p1j ’s, and then schedule the jobs of J2 in LPT of their p2j ’s.

Theorem 1.2. SPT (1)-LPT (2) produces an optimal schedule for F2||Cmax.

Proof. (Sketch of what was done in class)
Let S be a permutation schedule for F2||Cmax. Renumber the jobs according to their

order (ie. they are scheduled in the order 1, 2, . . . , n).
We may assume that there is no idle time on machine 1 (because scheduling jobs as early

as possible on machine 1 does not violate feasibility). Let t be any idle time on machine 2.
We may assume that the job k starting at time t on machine 2 starts immediately after job
k completes on machine 1. Otherwise we could’ve started job k earlier on machine 2. We
will say job k is responsible for this idle time t. Let ` be the last job responsible for any
idle time.

The makespan of the schedule is determined by the sum of the processing times of the
first ` jobs on machine 1 and the sum of the processing times of the last n− ` + 1 jobs on
machine 2: Cmax =

∑
j≤` pj,1 +

∑
j≥` pj,2. If we reduce all the processing times by a fixed

amount ∆, then any sum of n + 1 processing times decreases by (n + 1)∆. Therefore, if we
show that given these decreased processing times, and a fixed order of jobs, then the jobs
responsible for the idle times in the old processing times are the same as that in the new
ones, then we have shown that the optimum remains the same with these new processing
times. Assume this for the time being, we come to it a bit later.

Recall that if a job j has pj,1 = 0, then it is scheduled first on machine 1: it does not
delay any jobs on machine 1 and only buys waiting time on machine 2. Likewise, if a job j
has pj,2 = 0, then it can be scheduled last on machine 2.

We can construct an optimal schedule by repeatedly finding the job j that has minimum
processing time on either job (ie. ∆ = arg minj{pj,1, pj,2}, subtracting the that value from
that of all the processing times and then scheduling the job with zero processing time
according to the above rule and repeating. The schedule produced is the same as that given
by SPT (1)-LPT (2) rule.

Coming back to why given a schedule with new processing times, the pattern of idle
times remain the same. Take a idle time [t1, t2] in the old processing times. Assume t1 > 0,
that is, we are not at the first idle time for which job 1 is responsible. The reason why idle
times behave similarly is that with the new processing times, there will be a corresponding
idle time at time [t′1, t

′
2] where t′2 = t2 − k∆ for some integer k, and t′1 = t1 − k∆, for the

same k. Draw a picture to convince yourself of this. We are not being rigorous here.

2

2 Job Shop Scheduling

2.1 Disjunctive Graph of the Instance

Given a job shop instance, we construct the disjunctive graph as follows. In this graph,
there is a vertex (i, j) for every operation on each job. There is also a source s and a sink t.

There are two kinds of edges between these vertices. There are fixed arcs and disjunctive
edges. For any job j, there is arc from (i, j) to (i′, j) if j needs to be processed on machine
i before machine i′. The source s has an arc to all nodes (i, j) which do not have any
incoming fixed arcs. The sink t has an arc from all vertices (i, j) with no out-going edges.

For any machine i, there is an undirected edge from (i, j) and (i, j′), for any two jobs
j and j′. These edges are called disjunctive edges. This completes the description of the
graph.

The semantic of the graph is as follows. Suppose we fix an acyclic orientation of the
disjunctive edges. So, every disjunctive edge of the form (i, j)− (i, j′) is either oriented as
(i, j)→ (i, j′) or (i, j′)→ (i, j). Once given this acyclic directed graph, we think of the arcs
as precedence constraints which must be satisfied by the schedule. This leads to a valid job
shop schedule as follows.

Given an orientation, let us first describe the weights on the arcs. An arc (fixed or
the oriented disjunctive) coming out of a vertex (i, j) has weight pi,j . Given these weights,
define ti,j for any vertex i, j as the longest path from s to (i, j). This is the time when job
j is scheduled on machine i, and thus an orientation of the disjunctive edges correspond to
a schedule for the job shop scheduling problem.

In the next section we see how we can use the above disjunctive graph to get an integer
program formulation for the job-shop scheduling problem. Finally, we will see a heuristic
to get a good orientation for the above problem.

2.2 Integer Programming Formulation

We have a variable C for the makespan, and Cij for the completion time of job j’s operation
on machine i. Therefore, we have the following constraints corresponding to fixed arcs:

Ci′j ≥ Cij + pi′j ∀ fixed (i, j)→ (i′, j) (1)

For the disjunctive edge (i, j) − (i, j′), we have to decide which way to orient it. If we
knew the orientation, then we could write a linear constraint on the completion times as
follows

Cij′ ≥ Cij + pij′ if (i, j)→ (i, j′)
or

Cij ≥ Cij′ + pij if (i, j′)→ (i, j)

For every disjunctive edge, we have two variables X(i,j),(i,j′) and X(i,j′),(i,j) with the semantic
that the first is 1 if the edge is oriented from (i, j) to (i, j′), and 0 otherwise. The latter
has exactly the opposite semantic. Thus we add the following set of constraints for every
disjunctive edge to capture the above.

3

M ·X(i,j′),(i,j) + Cij′ ≥ Cij + pij′ (2)

M ·X(i,j),(i,j′) + Cij ≥ Cij′ + pij (3)

X(i,j′),(i,j) + X(i,j),(i,j′) = 1 (4)

X(i,j′),(i,j), X(i,j),(i,j′) ∈ {0, 1} (5)

where M is a large number with the following property. If X(i,j′),(i,j) = 1, that is the
edge is oriented from (i, j′) to (i, j), then I need only the second constraint to be true, and
not the first. Thus, M should be so large that the first is true any way. Choosing M to be
the sum of all processing time suffices.

Thus, now the integer program is as follows:

min C (6)
∀(i, j); C ≥ Cij ∀(i, j) (7)

∀ fixed (i, j)→ (i′, j) Ci′j ≥ Cij + pi′j (8)
∀ disjunctive edge (i, j)− (i, j′)

M ·X(i,j′),(i,j) + Cij′ ≥ Cij + pij′ (9)

M ·X(i,j),(i,j′) + Cij ≥ Cij′ + pij (10)

X(i,j′),(i,j) + X(i,j),(i,j′) = 1 (11)

X(i,j′),(i,j), X(i,j),(i,j′) ∈ {0, 1} (12)

4

