Scheduling Theory CO 454, Spring 2009
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1 Classes of Schedules

A convenient way to visualize schedules is to use what are called block diagrams or Gantt
charts. A Gantt chart is a 2-D plot with time on the x-axis and machines on the y-axis.
Each job is represented by a series of axis parallel rectangles. Given a schedule S, if job j
is processed by machine ¢ from time a; to b;, then there is a rectangle corresponding to job
J with y-coordinate corresponding to machine ¢, and = coordinates stretching from time a;
to bj. The following example illustrates a Gantt chart.

Example 1.1. Consider the following scheduling problem (R3 | prmp | > C;) with 3 un-
related parallel machines and 3 jobs with times as given by the following table.

Jobs || Machine 1 | Machine 2 | Machine 8
Red 100 100 15
Blue 30 30 10

Green 100 15 20

One schedule for the problem runs the blue job on machine 1 for 10 units, on machine 2
for the next 5 units and on machine 3 for the next b units; runs the green job on machine
2 for the first 10 units and then again from time 15 to time 20; and runs the red job on
machine 3 for the first 15 units. The Gantt chart for this schedule is given as follows.

Machine 3 | || |

Machine 2 | || || ‘

Machine | ‘ |

We make a few observations about the previous example. Firstly, we note that the above
solution is not optimal. The reason is that during time 10 to 15, the green job is not being
processed by any machine although machine 1 is not processing any job in that interval.



Thus, a better schedule would be to process some part of the green job from time 10 to 15
on machine 1, and the the remaining on machine 2, time 15 onwards. This decreases Cgyreen
while keeping the completion time of other jobs the same, thus giving us a better schedule
with respect to the performance measure ) | C;. This brings us to the following definition.

Definition 1.2. (Nondelay Schedule) A machine is idle at a time instant if it is not
processing any job. The idleness is forced if given the state of the processing of the various
jobs, no job can be assigned to the machine at that time instant. Otherwise the idleness is
called unforced A schedule is called nondelay if there is no unforced idleness in the machines
at any time instant.

Let us give an example of forced idleness. Consider an instance of (P2 | prec | ) with
two jobs with job 1 preceding job 2. While job 1 is being processed on say machine 1,
machine 2 has to remain idle till the processing of job 1 gets completed. This is forced
idleness. If there were no precedence constraints, and machine 2 still remained idle, that
would be unforced idleness and the schedule would be a nondelay one.

It might seem from the above example that there is always an optimal schedule which
is nondelay. In fact, we show that in some cases that is indeed true, and this brings us to
the first theorem of the course.

Theorem 1.3. For any scheduling instance (« | prmp, B | v) where v is a reqular perfor-
mance measure, there exists a nondelay schedule which is optimal.

Proof. Although stated as a theorem, this statement actually follows from the definition of
nondelay schedules. Consider an optimal schedule S for the problem instance which has
some unforced idleness. Therefore, there exists a machine ¢ and a job j and a time instant
t when j can be processed but is not processed by any machine, and machine ¢ is idle.
Therefore, scheduling a positive fraction of job j on machine ¢ at time ¢, and this can be
done since preemption is allowed, decreases the completion time of j. Since « is regular,
the objective value does not increase. Therefore, we can remove all the unforced idleness in
the schedule without increasing its objective value proving there exists an optimal nondelay
schedule. O

Exercise 1.4. Show that preemption is necessary for the above theorem. That is, come
up with a scheduling problem where no optimal schedule is nondelay. Also show that the
reqularity condition is necessary for the performance measure. Come up with an example
where preemption is allowed, the performance measure is not reqular, and no nondelay
schedule is optimal.

Nondelay schedules can also lead to certain undesirable properties. For instance, given a
scheduling problem, one would expect that decreasing the processing time of any job could
only decrease the optimum of the scheduling problem. However, we now show an example
where the optimal nondelay schedule increases as the processing time of a job is decreased.

Example 1.5. Consider an instance of (P2 | prec | Cpaz) with 8 jobs whose processing
times are as follows.
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The precedence constraints are as follows: 1 — 2;1 —3;2—8;3 —8;and5 — 6 — 7 — 8.
The optimal schedule is as follows:

Machine 1: 1 2 3 4
Machine 2: 5 6 7 8

with Cee = 12. Now consider the example when the processing time of job 7 goes down to
1. What is the optimal schedule now? What is the optimal nondelay schedule?

Based on the above examples, we now relax the condition of no unforced idleness to
define what is called an active schedule. Recall that a job can consist of various operations
and a job is completed only after all the operations is completed.

Definition 1.6. A schedule is called active if one cannot change the order of processing of
operations on the machines and have at least one operation finish earlier and no operation
finish later.

Consider the following scheduling problem. There are three machines and two jobs. Job
1 needs to be processed on machine 3 for 1 unit of time and on machine 2 for 2 units of
time. Job 2 needs to be processed on machine 2 for 2 units of time and on machine 1 for 2
units of time. (What is the notation for this scheduling problem?) Consider the following
schedule for the problem given by the Gantt chart. (This example is from the textbook,
Page 24).
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The above schedule is active. To see this it suffices to check the order of processing on
machine 2 since it is the only machine which both jobs need processing on. If we process
job 1 before job 2, note that we can start processing at time 1 and end by time 3. However,
job 2 will end only at time 5 which is later than the time at which job 2 finishes in the
previous schedule. Note however that the above schedule is not non-delay — the machine 2
remains idle between time 1 and 2 which job 1 remains idle as well.

Now consider a tweak in the problem where we keep everything the same except job
1 requires time 1 on machine 2. The Gantt chart of the above schedule now becomes the
following.

The above is not active because now we can process job 1 on machine 2 between times
1 and 2 and finish it earlier without changing the completion time of job 2.

One way to think of an active schedule is to look at its Gantt chart and claim that
one cannot “fit” a block corresponding to job j into the “holes” appearing to the left of
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the block, where a holes are time intervals when there is unforced idleness on a machine ¢
with the job j being idle at that time as well. Note that in the second example above the

rightmost block of job 1 can be moved into the hole created on machine 2 from time 1 to
time 2.

Exercise 1.7. Show that for any regular performance measure v, and any problem instance

of (J || 7), there exists an active schedule which is optimal. (Note: it is not necessary that
all optimal schedules are active).



