
Scheduling Theory CO 454, Spring 2009

Lecture 4: Single Machine Environments (Release Dates)

May 14th, 2009

1 Minimizing Average Completion Time with Release Dates

Consider the case when there are release dates rj for every job and we want to minimize
the average completion time. That is, we want to solve (1 | rj |

∑
Cj). Our first attack

will be to apply the SPT rule. However, we are faced with a problem since the job with the
shortest processing time might not be released at time 0. There are two possible ways we
could modify SPT.

1. Sort the jobs in increasing processing times. Process jobs in this order, if job j − 1
is finished at time Cj−1 and Cj−1 < rj , then remain idle till rj and process job j at time rj .

2. Starting from time t = 0, at time t process the job j which has the shortest process-
ing time among all jobs which have been released by time t; if no such job, then remain idle.

Unfortunately, none of the above algorithms are optimal. In fact, the problem is NP-hard,
a concept which we will dig deeper into in the coming lectures. For the time being suffice to
know that we do not expect any polynomial time exact algorithm. However, if preemption
is allowed, then the above problem can indeed be solved in polynomial time.

1.1 Release Dates with Preemption (1 | rj, pmtn |
∑

Cj)

If preemption is allowed, then the following generalization of SPT works.

Definition 1.1. (SRPT) Shortest Remaining Processing Time: At any point of time, sched-
ule the job with the shortest remaining processing time, preempting when jobs with shorter
processing times are released.

Theorem 1.2. SRPT gives an optimal algorithm for (1 | rj , pmtn |
∑
Cj).

Proof. The proof also follows by an interchange argument, however in this case we do not
interchange two jobs but possibly parts of the two jobs. Consider an optimal schedule S
in which a job k is being processed at time t while there exists an unfinished job l such
that r` ≤ t, that is, the job l is available at time t, and xk > x`, where xk and x` are the
remaining amounts of the two jobs.

Note that the machine processes job k and l for xk+x` units after time t. Construct a new
schedule S′ by processing only job ` on the first x` units of these times, and processing job
k on the remaining xk units. Since x` < xk, in the new schedule job ` finishes strictly before
the time when either job k or ` finished in the old schedule. That is CS′

` < min{CS
k , C

S
` }.

1



Also note that CS′
k = max{CS

k , C
S
` } and CS′

j = CS
j for all other j 6= k, `. Thus,

∑
Cj

strictly decreases which is a contradiction.

Unlike the proof without release times, the above argument does not extend to the
weighted case (Can you see why?). In fact, the weighted case is NP-hard even with preemp-
tion. Now we show how the above algorithm can be used to give an efficient approximation
algorithm for (1|rj |

∑
Cj).

1.2 Release Dates without preemption (1|rj|
∑

Cj)

Firstly, let us define what an approximation algorithm is.

Definition 1.3. Given a scheduling problem (α|β|γ) a ρ-approximation algorithm (for
ρ ≥ 1) returns a schedule S such that γ(S) ≤ ρ · γ(S∗) where S∗ is the optimal schedule.

We now describe a 2-approximation algorithm for the problem (1|rj |
∑
Cj). This algo-

rithm will use the exact algorithm for the problem (1|rj , pmtn|
∑
Cj) to get the schedule.

Henceforth we will denote the optimal schedule for the (1|rj |
∑
Cj) as S∗ and denote the

average completion time of S∗ as OPT .
Let P be the optimal schedule found by the SRPT algorithm for the problem (1|rj , pmtn|

∑
Cj).

Note that
OPT ≥

∑
j

CP
j (1)

This is because any feasible schedule for (1|rj |
∑
Cj) is a feasible schedule for (1|rj , pmtn|

∑
Cj).

Thus the average completion time of P is a lower bound on that of the optimum schedule.
In fact in the schedule S that we construct, we will show that the average completion time
of S is at most twice the average completion time of P rather the twice the optimum. This
method of comparing the solution with a lower bound on which we have a better handle
on, rather than the optimum is very prevalent in the field of approximation algorithms. We
now state the algorithm.

Algorithm Convert-From-Preemption

1. Apply SRPT to obtain the optimal schedule P for (1|rj , pmtn|
∑
Cj).

2. Order the jobs in increasing order of completion time in P , that is,
CP

1 < CP
2 < · · · < CP

n .

3. Process the jobs non-preemptively in this order to get schedule S.

Theorem 1.4. Algorithm Convert-From-Preemption is an efficient factor 2-approximation
algorithm for (1|rj |

∑
Cj).

Proof. We know that
∑

j C
P
j ≤ OPT . If we show that for every job j, CS

j ≤ 2CP
j , then we

will be done. Let tSj be the time when job j is started in schedule S. Say that the machine
is idle at time t in S if it is not processing any job at time t. Note that a machine is idle
only if the next job in the order to be processed on the machine has not yet been released.

2



Let idle(t) denote the total time the machine is idle in schedule S until time t. Now note
that

CS
j =

∑
i≤j

pi + idle(tSj )

The above is true for any non-preemptive schedule. Also note that
∑

i≤j pj ≤ CP
j for by

definition of the order, all jobs i ≤ j finish before j in P . Now comes the crucial claim.

Claim 1.5. In the schedule S, the machine has no idle time from CP
j to tSj .

Proof. Suppose the machine is idle at time t ∈ [CP
j , t

S
j ]. Then it must be awaiting the

release of some job k which comes in order before j, that is rk > CP
j . However, the reason

it is in order before j is because CP
k < CP

j . In other words, P completes k before CP
j and

in particular, the job must have been released by time CP
j .

The above claim implies that idle(tSj ) = idle(CP
j ) ≤ CP

j . Thus, we get CS
j ≤ 2CP

j .

A factor ρ approximation algorithm is tight if there is an example where the optimum
and the schedule found by the algorithm is indeed away by a factor ρ. Is the above factor
2 approximation algorithm tight?

3


