
Scheduling Theory CO 454, Spring 2009

Lecture 5: Single Machine Environments (Maximum Lateness)

May 19th, 2009

1 Minimizing Maximum Lateness

In this lecture we will focus on minimizing maximum lateness in single machine envi-
ronments. Recall that given a schedule and due dates, the lateness of job j is given by
Lj = Cj − dj . Therefore, the problems of minimizing sum (or weighted sum) of lateness is
equivalent to the problem of minimizing the sum (weighted sum) of the completion times
which was the focus in the last lecture. We first look at the problem with no restrictions.

1.1 (1||Lmax)

Since we want to decrease the maximum lateness, it makes sense to process the jobs with
earlier due dates faster. In the case of this problem, this algorithm is indeed exact.

Definition 1.1. (EDD) Earliest Due-Date: Schedule jobs in increasing order of their due
dates.

Theorem 1.2. EDD gives an optimal solution to (1||Lmax).

Proof. Once again we will apply the interchange argument we saw in the last lecture. Sup-
pose there is a schedule such that there exists jobs k and ` such that k is processed before
` and dk > d`. As we saw last lecture, we may assume k and ` are consecutive. We now
argue that swapping the jobs k and ` will give us a schedule with no larger Lmax. This will
show that there is an optimal schedule with all dk’s nondecreasing implying EDD gives an
optimal schedule.

To see this we show that in the schedule S′ with k and ` swapped, the quantity
max{LS′

k , LS′
` } ≤ max{LS

k , LS
` }. Since the completion time, and hence the lateness, of

any other job remains the same we will be done. Suppose in schedule S, the job j is sched-
uled at time t. Then LS

k = t + pk − dk and LS
` = t + pk + p` − d` and thus LS

` > LS
k since

d` < dk. On swapping, LS′
` = t+p`−d` < LS

` and LS′
k = t+pk +p`−dk < LS

` since d` < dk.
Thus, the maximum is less than LS

` finishing the proof.

2 (1||fmax)

We now generalize the problem of minimizing maximum lateness as follows. Suppose we are
given n nondecreasing functions f1, . . . , fn, one for each job. Given a schedule S, the cost
contributed by job j towards this schedule is fj(CS

j). The problem (1||fmax) is to minimize

max
j∈J

fj(Cj)

1

To see that this generalizes the problem of minimizing maximum lateness, look at functions
fj(Cj) := Cj − dj .

The algorithm we describe for (1||fmax) is a little different from all the algorithms we
have seen so far (with the possible exception of (1|rj |

∑
Cj). All the algorithms till now

were as follows: we set up a priority rule over all jobs, for instance, the priority rule was
either the processing time, the ratio of weight to processing time, the due date; and the
schedule was to process the “next available job” in the priority order on the machine. Once
this priority order was set, the algorithm was purely local, in the sense it needed to know
only the next item in the order and nothing else in the data. The algorithm we describe
now is a little more sophisticated and takes more time than the priority-rule algorithms.
However, it makes up in the generality.

Algorithm Least-Cost-Last (LCL)

1. Initialize X = J . Initialize stack S to be empty.

2. Until X is empty do

• Find j ∈ X which minimizes

j = arg min
k∈X

fj(
∑
k∈X

pk)

• Append j to the front of the stack S and delete j from X.

3. Schedule the jobs in the order S.

The intuition of the algorithm is as follows. We know that any optimal algorithm will
not have idle time on the machine (Note that there are no side constraints). Thus, the last
job j, whichever it is, faces a cost fj(

∑
k∈J pk). The algorithm picks this last job to be the

one with the least cost, deletes j from the set of unordered jobs, and repeats.
Before we prove the optimality, it is instructive to note for the special case of Lmax, the

LCL algorithm coincides with the EDD algorithm.

Theorem 2.1. LCL returns an optimal schedule for (1||fmax).

Proof. Consider an optimum schedule S which is not obtained by LCL. Suppose the order
of jobs scheduled by S is {1, 2, . . . , n}. Since S is not an LCL schedule, S schedules a job
` such that ` does not minimize fl(

∑
j∈X pj) where X is the set of items scheduled before

CS
` . Suppose k is the job in X such that fk(

∑
j∈X pj) is minimum. Now, instead of the

interchange operation we have seen so far, we do a shift operation to obtain a new schedule.
Consider the schedule S′ which processes the jobs 1 to k − 1, then processes jobs k + 1

to `, and then processes k. Thus, it has delayed the completion time of one job, k, and
decreased all the completion times of jobs from k + 1 to ` by pk. Since CS′

j ≤ CS
j for all j

except k, we know the same is true for fj(CS′
j). Moreover,

fk(CS′
k) = fk(

∑
j∈X

pj) ≤ f`(
∑
j∈X

pj) = f`(CS
`)

Thus, fS′
max ≤ fS

max. This proves that there is an optimal schedule which is LCL.

Exercise 2.2. What is the running time of the above algorithm?

2

