
Scheduling Theory CO 454, Spring 2009

Lecture 7: Single Machine Environments (Minimizing Weight of Late Jobs)

May 26th, 2009

1 Minimizing the Weight of Late Jobs (1||
∑

wjUj)

Recall that in a schedule a job j is late (Uj = 1) if Cj > dj . We wish to find a schedule
which minimizes the total weight of the late jobs. To understand the optimal substructure
we need to understand how the optimal schedule looks like.

Note that any schedule S divides the jobs into two sets: LS , late jobs with Uj = 1
and TS , timely jobs with Uj = 0. Also note that minimizing the total weight of late jobs
is equivalent to maximizing the total weight of timely jobs. Now, we make the following
observations.

Observation 1.1. We may assume that S processes all the jobs in TS before processing
any job in LS.

Proof. Since a job in LS is late, it doesn’t matter when it is scheduled. Thus, if a job in
TS is scheduled after a job in LS , swapping them doesn’t change the objective.

Observation 1.2. If T is the set of timely jobs, then we may assume that the schedule S
processes them in increasing order of due date (EDD).

Proof. We know that processing EDD minimizes Lmax and thus is T can be scheduled in a
manner such that Lmax ≤ 0, then EDD will achieve it.

We call a subset of jobs feasible if when processed in the EDD order none of the jobs
is late. Thus, the problem boils down to recognizing the maximum weight feasible subset
of jobs. Now we are ready to describe the optimal substructure of the problem. Order the
jobs in increasing order of their due dates as {1, . . . , n}.

Maintain a table T [i, q] which returns a feasible subset X of jobs from {1, . . . , i} of
maximum weight such that

∑
j∈X pj = q. If no such subset exists, let T [i, q] be null. Also

maintain a parallel table t[i, q] which contains the weight of T [i, q]. If T [i, q] is null, then
we let t[i, q] = −∞. Note that i goes from 0 to n and q goes from 0 to

∑
j pj .

Suppose we have constructed the complete table. Then, we look at all the entries of
the row T [n, q] and the non-null entry entry with the largest weight must be the maximum
weight feasible subset of jobs. We now describe a dynamic program to update the entries
of the tables.

Note that the entries T [i, 0] for all i is the empty set ∅ and thus t[i, 0] = 0 for all i. Also
note that T [0, q] for any q ≥ 1 is null. Now we state a rule heorem to update the T [i+ 1, q]
entry of the table given entries in the table up to the ith row.

1

Lemma 1.3.

T [i + 1, q] =

{
T [i, q − pi+1] ∪ {(i + 1)}, if case A and B happens
T [i, q] otherwise

Case A: q ≤ di+1

Case B: t[i, q − pi+1] + wi+1 ≥ t[i, q].

Proof. Consider the set T [i + 1, q]. Note that if the element (i + 1) /∈ T [i + 1, q], then
T [i + 1, q] = T [i, q]. Thus it suffices to prove that the element (i + 1) ∈ T [i + 1, q] implies
case A and B, and case A and B implies T [i + 1, q] = T [i, q − wi+1] ∪ {(i + 1)}.

If (i+1) ∈ T [i+1, q], then since di+1 is the largest, the EDD will schedule (i+1) job the
last. Since the total processing time is exactly q, feasibility implies q ≤ di+1, that is case A.
Also, it must be the case that the weight of T [i, q] is at most the weight of T [i+ 1, q]. Thus,
t[i, q] ≤ wi+1 + t[i + 1, q]− wi+1. But the set T [i + 1, q] \ {(i + 1)} is also a feasible subset
of jobs {1, . . . , i} having total weight t[i + 1, q] − wi+1 and total processing time exactly
q − wi+1. By definition this must be less than t[i, q − wi+1]. This implies case B.

A similar argument shows that case A and B implies T [i+1, q] = T [i, q−wi+1]∪{(i+1)}.
This is because, A shows that the RHS is feasible and B shows that it has more weight than
the case when (i + 1) is not in the set.

The above implies a dynamic program which finds the optimum solution in time O(n
∑

j pj).
Note that it is not necessary to have the index of q go all the way to

∑
j pj but only to dmax

suffices.

2

