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1 Polynomial Time Algorithms

A computational problem instance has an input and an objective it wants to compute on
that input. An algorithm is a procedure to compute the objective function. The algorithm is
said to run in polynomial time, or equivalently the algorithm is a polynomial time algorithm,
if there exists a polynomial p(), and the time taken by the algorithm to solve every instance
of the problems is upper bounded by p(size(input)), the polynomial evaluated at the size
of the input.

To calculate the time taken to solve, we normally evaluate the number of steps the
procedure takes to solve the problem, assuming each step takes unit time. The definition
of step depends on the model of computation, however we will not go into the details of
this, and suffice ourselves with the assumption that an arithmetic step or a comparison step
taken one unit of time. Thus, for instance, if ever an algorithm requires the addition of
two numbers, we will assume this can be done in unit time, irrespective of the value of the
numbers.

The size of the input is more subtle. It consists of two parts. The first is the number
of input points that must be provided for the input. For example, in a scheduling problem,
(1||

∑
Cj) say, the input needs to provide the processing times of all the jobs on the single

machine. Thus the number of input points is n, the number of jobs. The second is the size
of each input value. The size of an input value pj , the processing time, depends on how
this input is encoded. For instance, the value pj , assume it is an integer, could be stored
as a bit-array of pj 1’s, in which case the size is exactly the value pj , or it can be stored as
a binary numeral, as it normally is, in which case the size is dlog2 pje. The first method is
called the unary representation of the input, the second is the binary representation. The
default input mode is assumed to be the binary representation of the data. The size of a
computational problem X is generally denoted as |X|.

So, coming back to the problem (1||
∑

Cj), the size of the input is (n +
∑

jdlog2 pje)
which is at least n+log2 pmax. An algorithm for (1||

∑
Cj) is polynomial time if the running

time is bounded by p(n+log2 pmax), where p() doesn’t depend on the input of the instance.
An algorithm which runs in time polynomial of the data when the data is represented

in unary is called a pseudo-polynomial time algorithm. Pseudo-polynomial time algorithms
are not polynomial time. An algorithm which runs in time polynomial of the number of
input points, irrespective of the size of the actual data, is called a strongly polynomial time
algorithm. Recall that the algorithm SPT, which orders the jobs in increasing order of
processing time, runs in time O(n log n) and thus is strongly polynomial time. (Note that
we assume here that the time taken to compare two numbers is unit even if the numbers
are huge).
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1.1 Polynomial Time Reductions

We have already looked at reduction among scheduling problems. The same can be extended
to any computational problem.

Definition 1.1. A computational problem X is polynomial time reducible to a computa-
tional problem Y , if given an algorithm A for the problem Y with time complexity T (|Y |)
(note that T might or might not be a polynomial), we can solve an instance of X in time
(p(|X|) + q(|X|)T (|X|)). Note that the input to the time function T is the size of X. We
denote this as X E Y or X ≤P Y .

Most often a polynomial time reduction proceeds in the following manner: given an
instance of X, we come up with an instance of Y , and argue that given the solution to this
instance of Y , one can recover, in polynomial time the solution for the instance of X. We
give an example.

Example 1.2. Consider the following two problems.

Hamiltonian Circuit Problem (HCP): Given a graph G on n vertices and m edges, is
there a hamiltonian circuit in G?
Travelling Salesman Problem (TSP): Given a graph G on n vertices (cities) with dis-
tance dij between any two cities i and j, find a tour of minimum distance.

Note that HCP ≤P TSP . To see this, given an instance of HCP , construct the instance
of TSP by defining the distance between vertices i and j as follows – dij = 1 is (i, j) is an
edge, and dij = 2 otherwise. It is now not too hard to see that there is a hamiltonian path
in the graph iff the optimal tour has cost n.

Why are polynomial time reductions useful? Well, if X ≤P Y , and if we have a polyno-
mial time algorithm for Y , then we have a polynomial time algorithm for X as well. Thus,
these reductions help in classifying the problems into “easy” and “hard” problems. Fur-
thermore, if there is a reason to believe that the problem X does not have any polynomial
time algorithm, then Y cannot have a polynomial time algorithm either. This is where
reductions come in most handy. Unfortunately, there is not a single problem for which we
can say there are no polynomial time algorithms. However, as we see in the next section,
there is a classification of problems into “easy” and “hard” problems with the property that
if any of the hard problems have a polynomial time algorithm, then they all do. This is
probably the most compelling reason why computer scientists believe that there can be no
polynomial time algorithm for any of them. Pretty flaky? That is unfortunately the state
of affairs!

2 P, NP and all that Jazz

Before going into the classification of problems, we comment on two different flavours of
problems we have seen.
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2.1 Decision vs Optimization Problems

Look at the example above. The problem HCP was a “yes/no” question. It asked whether
a graph has a hamiltonian cycle or not. The answer can be given in one bit. Such problems
are called decision problems. The problem TSP however was an optimization problem. It
asked for the minimum distance tour. We will concern ourselves with decision problems
in this section (although all problems in this course are optimization questions). Every
optimization problem X has a decision version X ′. For instance, the decision version of
TSP has input the input of TSP and an extra integer B, and the problem is: ”Given an
input of TSP , is there a tour of distance at most B?”. Note that this is a decision problem.
Furthermore, TSP ′ ≤P TSP , for if we have an algorithm for the optimization problem, we
can surely solve the decision problem. The converse is always not true. However, in most
cases, the solution to the decision problem also comes up with a solution which can be used
for the optimization problem. Lastly, note that since X ′ ≤P X, X is harder than X ′.

2.2 The complexity classes

A computational (decision or optimization) problem is said to be in the complexity class P
if there exists an polynomial time algorithm to solve it.

A decision problem X is said to be in NP, if for every “yes” instance there exists a
polynomial sized “certificate” which can be “verified” in polynomial time. Let us elucidate.
A “yes” instance of the problem X is one in which the answer is “yes”. For instance, a
graph which has a hamiltonian circuit is a yes-instance for HCP . A “certificate” for the
yes-instance is a proof that the instance is indeed a yes-instance. For instance, given a graph
which has a hamiltonian circuit, the circuit is the certificate. The size of the certificate is
required to be a polynomial in the size of the input. A “verifier” is nothing but a polynomial
time algorithm which takes input the yes-instance and the certificate. If for each yes-instance
there exists a certificate, and if the yes-instance can be verified in polynomial time in the
size of the input, then the problem is in NP. Since given a candidate hamiltonian circuit
of the graph, we can verify it is hamiltonian by simply checking the existence of the various
edges claimed by the circuit, we get that the problem HCP is in NP.

Let us look at another example. Consider the problem COMPOSITE which given an
input a natural number N , outputs yes if the number is composite, and no if the number
is prime. (What is the size of the input?) We claim that COMPOSITE ∈ NP. Why?
Because for every yes-instance, that is, a composite number N , we can give a certificate,
the factors of the numbers, say a and b, and this can be checked to be a proper certificate
by just multiplying the two numbers and seeing if it gives N or not.

Remark 2.1. The P in P stands for “polynomial time”. However, NP does not stand for
“not polynomial”. It stands for non-deterministic polynomial time. This is because any
problem in NP can be solved in polynomial time of one could “non-deterministically guess”
the polynomial sized certificate for every yes-instance.

We now give a rigorous definition of the classes. Any decision problem X has two
instances, the yes-instance and the no-instance. A certificate or a proof, y, of an instance is
a string of {0, 1} which may depend on x. y is said to have polynomial size if |y| = poly(|x|).
A verifier V takes as input an instance, x, and a proof y, and outputs yes or no.
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Definition 2.2. A decision problem X ∈ P, if there exists a polynomial time algorithm
A such that for every yes instance x ∈ X, Ax = yes; and for every no instance x ∈ X, we
have Ax = no.

Definition 2.3. A decision problem X ∈ NP, if there exists a polynomial time verifier V
such that

For every yes instance x ∈ X, there exists a polysized proof y such that V (x, y) = yes.
For every no instance x ∈ X, and for every proof y, we have V (x, y) = no.

What is the relation between the classes P and NP? Well P ⊆ NP.

Theorem 2.4. P ⊆ NP.

Proof. Let X be any decision problem in P (the optimization problems can be handled
similarly). Let A be an algorithm to solve the problem. Let x be a yes-instance of X. As a
verifier, one can just run A on x to check it is a yes-instance. Thus, the certificate is empty
and the verifier is just the algorithm A.

Are all decision problems in NP? All the problems we have looked at so far are in NP.
But that doesn’t mean that all problems lie in this class, or at least are not known to lie in
this class.

Example 2.5. Let us turn the COMPOSITE problem on its head to get the PRIMES
problem: Given a natural number N , decide whether the number N is a prime number or
not. Can you now find a good certificate for yes-instances? That is, given a prime number
N , can you provide some extra proof that N is a prime which can be verified in polynomial
time? It turns that one can, however the answer is not simple and one needs to use algebra
to give this certificate.

We end this section with the following million dollar exercise.

Exercise 2.6. Prove or disprove: P = NP.

2.3 NP-completeness

It is safe to say that most researchers believe that P 6= NP. However, many researchers also
believe we do not have an inkling of an idea how to solve this problem. What researchers
have done however is they can identify the “hardest” problems in NP.

Definition 2.7. A problem Y is called NP-hard if any problem X ∈ NP can be reduced
to Y , that is, X ≤P Y . Y is called NP-complete if Y ∈ NP.

Thus, NP-complete problems are the hardest problems in NP, if one can be solved
in polynomial time then so can all other problems in NP. A priori there is no reason to
believe that there will be any NP-complete problem. However, Stephen Cook from UofT
showed that there is at least one. The problem is CIRCUIT SAT , which asks given a
circuit (made of gates and wires) with n boolean ({0, 1}) inputs and 1 boolean output, is
there an assignment of the inputs which makes the output 1?

Theorem 2.8 (S. Cook, 1971). CIRCUIT SAT ∈ NP.
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Now comes the beauty of reductions. Given an NP-complete problem Y , if we can
reduce it to another problem Z ∈ NP, then Z also is NP-complete. This is because the
reductions are transitive; X ≤P Y , Y ≤P Z implies X ≤P Z. Therefore when one problem
is proved to be NP-complete, reductions can be used to prove many are. Shortly after
Cook’s paper was published, Richard Karp from Berkeley published the idea of reductions
and gave a list of 21 NP-complete problems. Now there are hundreds of NP-complete
problems.

We now give a list of some useful NP-complete problems which will be useful to prove
NP-completeness of some scheduling problems.

1. HCP and TSP are NP-complete.

2. Partition: Given n positive integers a1, . . . , an, with B =
∑

i ai assumed to be even,
is there a partition of the numbers into two sets S and T such that

∑
ai∈S ai =∑

aj∈T aj = B/2.

3. 3-partition: Given 3n numbers a1, . . . , a3n, and a target B, with B/4 ≤ ai ≤ B/2 and∑
ai = nB, can we partition the numbers into n-sets S1, . . . , Sn each of cardinality 3

such that each set has numbers summing up to exactly B.

4. Vertex Cover: Given a graph G and a number B, are there at most B vertices such
that each edge in G is adjacent to at least one of these vertices.

In the next lecture or two we will see a list of scheduling problems which are NP-
complete. The basic schema we will use to prove NP-completeness of a problem X will be
the following:

1. Show X ∈ NP (This is normally easy).

2. Pick a suitable NP-complete problem Y .

3. Reduce Y ≤P X.

To reduce a problem X to Y , normally the following three steps is used.

• Come up with a procedure which for an arbitrary instance x ∈ X gives an instance
y ∈ Y in polynomial time such that

– YES case: If x is a yes-instance of X, then y is a yes-instance of Y .

– NO case: If x is a no-instance of X, then y is a no-instance of Y .

• Thus if Y can solved in polynomial time, one can use the above procedure to convert
an instance of X to an instance of Y , and check if the Y -instance is yes or no, using
the algorithm.

Claim 2.9. Knapsack problem is NP-complete.
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Proof. The decision version of the knapsack problem asks if there exists a feasible subset of
items with profit at least P , where P is an input parameter. We leave checking if Knapsack
in NPas an exercise. We reduce Partition to the knapsack problem. Given an instance of
the partition problem: {a1, . . . , an} construct a knapsack instance with n items with item
i having weight ai and profit ai as well. Let the capacity of the knapsack be B/2 and the
value of P be B/2 as well.

If the instance of partition is a yes-instance, then the instance of knapsack is also a
yes-instance. This is because the set of numbers which add up to B/2 gives a profit of B/2
as well. If the instance of partition is a no-instance, then any set of numbers which add up
to at most B/2 must be strictly less. Thus, any feasible solution of the knapsack instance
must have total weight and therefore total profit equalling strictly less than P . Thus, it is
a no-instance of the knapsack problem.

This completes the proof. In fact, it proves the special case of knapsack when weight of
an item equals its profit is also NP-complete.
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