Scheduling Theory CO 454, Spring 2009

Homework 2
Due: May 21st, 2009

1. Suppose the optimal schedule S is not SPT. Then there must be a job k£ and a job
h such that pr > pp and the machine processes k before h. We may assume that k
and h are consucutive in the schedule. Now consider the schedule S’ obtained from
S by swapping jobs k& and h. Note that the completition times of all jobs j # k, h is
the same in S and S’, that is C]SI = CJS for all j # k,h. It is not hard to see that

C,f/ = C;Lq and C’;f/ = C’;f —pr+pn < C,f. Therefore
STHCE) =S F(CY) = F(CF) — FICF) + F(CF) - F(CF) >0,
J J

contradicting the fact that S is an optimal schedule.

Applying SPT to the given problem we obtain the optimal schedule 35718246, of value
> f(C) = 14 3%+ 5% 4+ 82 + 117 + 15% 4 20% + 26° = 1521.

2. Running the SRPT algorithm we see that in this instance we do not need to use
preemption and we process the jobs in the order 641235. As we do not use preemption
in this schedule, the schedule obtained from CFP is the same as the one for SRPT.
Note that every valid schedule for (1 | r; | >~ Cj) is also valid for (1 | rj,pmtn | > Cj).
Therefore the optimal value for (1 | r; | > Cj) is at least the optimal value for
(1| rj,pmtn | Y Cj). Thus the schedule found by the algorithm is optimal.

3. Let P be an optimal schedule for (1 | 7j,pmtn | 3 C;), of value OPT?. If we show
that CFP < 1.5 OPT", then we will be done. With an interchange argument, it is
easy to see that we may assume that with two jobs at most one job is preempted.
Moreover, if an optimal schedule for (1 | r;j, pmtn | Y C;) does not use preemption,
then CFP = OPT?Y = OPT and we are done. So we may assume 7 = 0,75 > 0
and SRPT produces a schedule in which we process job 1 until time ¢t = 79, then we
process and complete job 2 and finally we complete job 1. Thus we have OPTF =
ro + 2ps + p1 > 2p; and, by the SRPT rule, po < p; — ro. The corresponding
CFP schedule will process job 2 first and then job 1, so CFP = 2ry + 2py + p1 <
2(p1 — p2) + 2p2 + p1 = 3p1 < 1.5(2p1) < 1.50PTYT.

To construct the tight examples, consider the two job instance with job 1 having
p1 =T and r1 =0, job 2 having ps = 1 and ro =T — 2. Now the optimum schedule
is to process job 1 followed by 2 giving OPT = 271"+ 1. On the other hand, the CF P
algorithm will remain idle till time 7" — 2, process job 2 and then process job 1. Thus,
CFP=T—-142T—-1=3T—2. For any § > 0, we can find T large enough such
that (37 —2)/(2T+1) > (1.5 — ).

To construct an example which shows the tightness of (2 — §) consider the following
data generalizing the previous example.



Jobs | 1 2 3 k
D) T 1 2 2
Tj oO|T-2|T1]..|T1

The optimum schedules jobs in order {1, 2, ..., k} giving OPT = T+T+14+T+3+.. .+
T+(2k+1) = kT+0O(k?). Running CFP will process the jobs in order {2, 1,3,4,...,k}
which leads to CFP =T —1+2T —1+2T +1+...(2T +2k —5) = 2Tk + ©(k?). For
any fixed J it is possible to choose large enough k and T such that CFP/OPT > 2.

. At the first LCL iteration we have ) p; = 55, so the minimum of f;(3 ,cx Ck) is
77, attained by job 2 and 7. We pick job 2, so we have X = {1,3,4,5,6,7} and
> kex Pr = 47. Now the minimum of f;(>,cx Ck) is attained by job 7. We repeat
this process and we obtain the order 3,5,1,6,4,7,2, with f,,4, = 144. An alternative
solution is the order 3,2,1,5,6,4,7 (obtained by choosing job 7 in the first iteration).

. We only need to slightly modify the algorithm seen in class for (1||fimae). At each
iteration we consider the set of jobs j such that j can be processed after all the jobs
in X \ {j}. This corresponds to the nodes in D with no outgoing arc to a node in X.
Hence the algorithm is as follows.

e Initialize R to be the set of nodes in D with no outgoing arcs and X = J. Let S
be an empty stack.

e Find 5 in X N R which minimizes

j = arg minge xqprf( Z Pk)
kEXNR

e Append j to the front of S and let X = X \ {j}. Remove j from R and add to
R all nodes in X with no outgoing arcs to nodes in X.

If n is the number of jobs and m is the number of arcs in D, the running time of the
algorithm is O(n?m). The proof of correctness is very similar to the proof for LCL
for (1| finaz)-

(a) In the best possible case we can fit all the items in the backpack. Hence the
maximum profit is at most i Pj- This is at most nPrqz.

(b) From part (a), p should range from 1 to nP,,q;. Moreover, i indexes the items,
so i should range from 1 to n. So the table has n?P,q. entries.

(¢) The optimum set of items for the problem is given by T'[n,p|, where p is the
maximum p such that T'[n, p| # null and t[n,p] < B.

(d) We have T'[0,0] = @ (so t[0,0] = 0), while T'[0, p] = null, tlo,p] = oo for every
p > 0. Moreover T'[i,0] = 0 and t[,0] = 0.

(e) We have T'[i + 1, p| equal to:
(i) null, if Y py < p,
(i) T'[i,p], if tli,p] # oo and t[i,p] < t[i,p — pit1] + wit1,
(iii) T[i,p — piy1] U {i+ 1} otherwise.
The first case occurs when with the items in {1,...,7 + 1} it is not possible to

obtain a profit p. Case (ii) occurs when the (i 4+ 1)th item is not in T'[i + 1, p],
and the last case occurs when item (i + 1) is in T'[i + 1, p].



