
Scheduling Theory CO 454, Spring 2009

Homework 3
Due: June 18th, 2009

Solutions
1. (6)

Run the dynamic programming algorithm done in class for (1||
∑
wjUj) for the following data.

Jobs 1 2 3 4 5
pj 2 3 1 2 2
dj 2 4 3 6 5
wj 3 4.5 1 2 3

Solution:
Ordering the jobs accordingly to the due date we get {1, 3, 2, 5, 4}. The entries of the following
table are the sets T [i, q], t[i, q].

i / q 0 1 2 3 4 5 6
0 ∅ , 0 null,−∞ null,−∞, null,−∞ null,−∞ null,−∞ null,−∞
1 ∅ , 0 null,−∞ {1} , 3 null,−∞ null,−∞ null,−∞ null,−∞
2 ∅ , 0 {3} , 1 {1} , 3 {1, 3} , 4 null,−∞ null,−∞ null,−∞
3 ∅ , 0 {3} , 1 {1} , 3 {2} , 4.5 {3, 2} , 5.5 null,−∞ null,−∞
4 ∅ , 0 {3} , 1 {5} , 3 {2} , 4.5 {1, 5} , 6 {2, 5} , 7.5 null,−∞
5 ∅ , 0 {3} , 1 {5} , 3 {2} , 4.5 {1, 5} , 6 {2, 5} , 7.5 {1, 5, 4} , 8

2. (6)
In class, we saw a dynamic program to solve (1||

∑
wjUj) problem in time O(n

∑
j pj). Give

a dynamic programming algorithm to solve the problem in time O(n log n+ n
∑

j wj). (Hint:
Construct a table with entries indexed by items and weight with T [i,W] indicating a feasible
subset of weight exactly W having minimum total processing time.)

Solution: Maintain a table T [i,W] which returns a feasible subset of jobs from {1, . . . , i} with
the minimum sum of processing times such that the total weight of the jobs is exactly W . If
no such feasible set exists, we write T [i,W] is null. We let t[i,W] denote the sum of processing
times of T [i,W] with ∞ when the latter is null. Note that we are interested in finding the
largest W for which T [n,W] is not null. Once the whole table is constructed this can be done
by going over the last row of the table.
Now we claim that T [i + 1,W] can be computed from the smaller entries of the tables, that
is, the problem exhibits an optimal substructure. To see this note that if the (i + 1)th job is
indeed in T [i+1,W], then since its due date is larger than all the other due dates in {1, . . . , i},
it will be processed last by the optimal schedule. Thus, the (i + 1)th job will not be late if
and only if the sum of processing times of the remaining jobs of T [i + 1,W] plus pi+1 is less
than di+1. This is because we are storing the feasible subset which takes the minimum total
processing time. Furthermore, t[i,W − wi+1] + pi+1 must be at most t[i,W], for otherwise,
T [i,W] has smaller processing time. Therefore, the (i+ 1)th job is in T [i+ 1,W] if and only
if t[i,W − wi+1] + pi+1 ≤ di+1 and t[i,W − wi+1] + pi+1 ≤ t[i,W] . If the (i+ 1)th job is not
in T [i+ 1,W], then T [i+ 1,W] = T [i,W].

T [i+ 1,W] =

{
T [i,W − wi+1] ∪ (i+ 1) if t[i,W − wi+1] + pi+1 ≤ di+1 and t[i,W − wi+1] + pi+1 ≤ t[i,W]
T [i,W] otherwise

(1)

1

Theorem 0.1. The above dynamic program gives the optimal schedule for (1||
∑
wjUj) in

time O(n log n+ n
∑

j wj).

3. (2+2+2) For each of the statements, write true or false giving reasons.

• If X ≤P Y and Y ≤P Z, then X ≤P Z.

• If X ≤P Y and Y is NP-hard then X is NP-hard.

• Let X be a problem in the class NP. If P 6= NP , then X cannot be solved in polynomial
time.

Solution:

• True. Suppose Z can be solved in time T (|Z|). As Y ≤P Z, there exist two polyno-
mials r, s such that Y can be solved in time r(|Y |) + s(|Y |)T (|Y |). As X ≤P Y , there
exist two polynomials p, q such that X can be solved in time p(|X|) + q(|X|)(r(|X|) +
s(|X|)T (|X|)) = p′(|X|) + q′(|X|)T (|X|), where p′() = p() + q()r() and q′() = q()s() are
polynomials. Hence X ≤P Z.

• False. The assertion shows that Y is harder than X, and not vice-versa, which is what
we need. This is trivially reducible to any problem Y , but it is not NP-hard.

• False, as ∅ 6= P ⊆ NP . For example, consider an instance of (1||
∑
Cj) and the problem

of determining if there exists a schedule of value at most B. This problem is in NP and
can be solved in polynomial time, independently of whether P=NP or not.

4. (3+3)

(a) The HPP (Hamiltonian path problem) is the following: given a graph G is there a simple
path which contains every vertex of G. Recall thatHCP (Hamiltonian cycle problem) was
given a graphG, if there is a cycle containing each vertex ofG. Show thatHCP ≤P HPP .

Solution: We can assume that the number of vertices is greater than 4 for otherwise one
can solve HCP in constant time. Suppose we have a polynomial time algorithm A for
HPP . Given a graph G, we now show how to use A to get a polynomial time algorithm
for HCP . If there is a hamiltonian cycle in G, then since there are at least 4 vertices for
every vertex u there must be distinct vertices w, v, x such that (w, u), (u, v), (v, x) are all
edges of G and are in the hamiltonian cycle. Now look at the graph H obtained from G
by deleting all edges incident to u and v except the edge (w, u) and (v, x). Thus, in the
new graph H, the vertices u and v have degree 1. Now run the algorithm A on H. If
there exists an hamiltonian path P , then since u and v are vertices of degree 1, they must
be the end points. Thus the cycle P ∪ (u, v) is a hamiltonian cycle in G. Furthermore,
if G has a hamiltonian cycle, then for at least one choice of w, v, x, the graph H would
have a hamiltonian path.
Algorithm:

i. Pick any vertex u of G.
ii. For all neighbor v of u, for all neighbors x of v x 6= u, and for all neighbors w of u

such that w 6= v, x (Note there are at most O(n3) (actually much better) iterations
and thus this algorithm is polynomial time)
• Construct graph H by deleting all edges in G incident to u and v except the edges

(w, u) and (x, v).
• Run algorithm A on H. If A returns yes, return yes.

iii. If A returns no on all iterations above, return no.

(b) In class we saw that HCP ≤P TSP which showed that TSP was NP-hard. Show that it
is NP-hard to obtain a tour of total length at most βC∗ for any β > 0, where C∗ is the

2

length of the optimal tour.

Solution: Given an instance of the HCP problem, construct an instance of TSP by
setting distances d(i, j) = 0 if (i, j) is an edge, and d(i, j) = 1 if (i, j) is not an edge.
In the YES instance of HCP , the optimum TSP solution is 0. Furthermore, any TSP
solution of length 0 corresponds to a hamiltonian cycle. If there were a polynomial time
algorithm which returned a tour of length at most βC∗, then in the YES case it would have
still returned a solution of length 0. Therefore, the hamiltonian cycle instance is a YES
instance if and only if the algorithm returned a tour of length 0. Thus HCP ≤P “β′′-TSP.

5. (a) (3)
Show that the problem (1|rj |Lmax) is NP-hard by reducing it to the partition problem
done in class. (Hint: Given an instance of the partition problem, construct an instance
of jobs with release dates such that if there is a partition no job is late, if there is no
partition, at least one job is late)

Solution Given an instance of partition: {a1, . . . , an} such that
∑

i ai = 2B, construct
an instance of (1|rj |Lmax) with n + 1 jobs. Jobs 1 to n have processing times pj = aj ,
release date rj = 0 and due date dj = 2B + 1. Job (n+ 1) has processing time pn+1 = 1,
release date rn+1 = B and due date dn+1 = B + 1. We claim that there is a partition of
the numbers {a1, . . . , an} if and only if there is a schedule which finishes all jobs on time.
If there is a partition S of the numbers which add up to exactly B, then the schedule
which processes jobs corresponding to S, then job (n+ 1) and then jobs in {1, . . . , n} \ S
will finish every job in time and start job (n+1) at time B. In the other direction, if there
is a schedule which finishes all jobs on time, then it must start job (n+ 1) at time B and
end it at time (B+ 1). Furthermore, there cannot be any idle time as the due-dates of all
other jobs is 2B + 1 which equals the sum of processing times. Thus, the jobs scheduled
before job (n + 1) must have processing times exactly adding up to B. This will imply
the partition.

(b) (3)
The above only shows that (1|rj |Lmax) is weakly NP-hard since partition is only a weakly
NP-hard problem. Show that (1|rj |Lmax) is strongly NP-hard by reducing it to Bin
Packing which is a strongly NP-hard problem.

Bin Packing: Given k items with sizes (a1, . . . , ak) and t bins each of capacity B,
can one partition the items into the t bins such that the total size of the items in any bin
is at most B.

(Hint: Given an instance of Bin Packing construct an instance with k + (t − 1) jobs,
where the first k jobs correspond to the sizes and the last (t− 1) jobs “partition” the jobs
into bins.)

Solution: Given an instance of bin-packing construct an instance of the machine scheduling
problems with n = k + (t − 1) jobs denoted as α1, . . . , αk and β1, . . . , βt−1. The processing
time of job αj is aj and the processing time of job βi is 1. The release dates of all αi jobs is
0 and release dates of job βi is iB + (i − 1). The due date of all αi jobs is tB + (t − 1) and
the due date of βi is iB + i. We claim that there is a schedule which finishes all jobs in time
if and only if the bin-packing instance has a feasible solution.

Suppose the bin-packing instance has a feasible solution, that is there exists a partition
J1, . . . , Jt of {1, . . . , k} such that

∑
j∈Ji

aj ≤ B for all i ∈ {1, . . . , t}. Then we can sched-
ule first the jobs αj , for j ∈ J1, then job β1, then jobs αj for j ∈ J2, then job β2 and
so on. As

∑
j∈Ji

pj ≤ B for all i ∈ {1, . . . , t}, each job βi can start at its release time
and end by the due date. Moreover, the last job αj to complete will complete by time
(t− 1)B + t− 1 +B = tB + (t− 1).

3

Now suppose there is a schedule which finishes all the jobs in time. This implies that every
job βi is processed between time iB + (i− 1) and time iB + i. For every i ∈ {1, . . . , t} let Ji

define the set of indeces of jobs αj processed after βi−1 and before βi. As there is no overlap
between jobs, for every i we have

∑
j∈Ji

pj ≤ iB + (i − 1) − [(i − 1)B + (i − 2) + 1] = B, so
J1, . . . , Jt is a feasible solution to the bin-packing problem.

4

