Scheduling Theory

CO 454, Spring 2009

Homework 3
Due: June 18th, 2009

Solutions

1. (6)

Solution:

Run the dynamic programming algorithm done in class for (1|| > w;Uj) for the following data.
Jobs | 1] 2 |3 |45
p; |23 |[1]2]2
di |2 4 [3|6]|5
w; | 345|123

Ordering the jobs accordingly to the due date we get {1,3,2,5,4}. The entries of the following
table are the sets T'[i, q], t[Z, q].

i/q] 0 1 2 3 1 5 6
0 0,0 | null,—oo | null,—oo, | null,—oco | null, —oco null, —oo null, —oo
1 0,0 | null,—oo {1}, 3 null, —oco | null, —oco null, —oco null, —oco
2 | 0,0 {3},1 {1}, 3 {1,3} ,4 | null,—oco | null,—oo | null,—oo
3 10,0 {3},1 {1},3 {2} ,45 | {3,2} ,5.5 | null,—c0 | null,—cc
4 (0,0 {3}.1 {5},3 {2},45 | {1,5},6 | {2,5},7.5 | null,—cc
5 [0,0] {3y.1 | {5}.3 | {2}.,45 | {1,5},6 | {2,5},75 | {1,5,4},8
2. (6)

In class, we saw a dynamic program to solve (1[| > w;U;) problem in time O(n}_; p;). Give
a dynamic programming algorithm to solve the problem in time O(nlogn +n ), w;). (Hint:
Construct a table with entries indexed by items and weight with T[i, W] indicating a feasible
subset of weight exactly W having minimum total processing time.)

Solution: Maintain a table T'[i, W] which returns a feasible subset of jobs from {1, ...,4} with
the minimum sum of processing times such that the total weight of the jobs is exactly W. If
no such feasible set exists, we write T'[¢, W] is null. We let t[i, W] denote the sum of processing
times of T'[i, W] with oo when the latter is null. Note that we are interested in finding the
largest W for which T'[n, W] is not null. Once the whole table is constructed this can be done
by going over the last row of the table.

Now we claim that T'[i + 1, W] can be computed from the smaller entries of the tables, that
is, the problem exhibits an optimal substructure. To see this note that if the (¢ + 1)th job is
indeed in T'[i + 1, W], then since its due date is larger than all the other due dates in {1,...,i},
it will be processed last by the optimal schedule. Thus, the (i + 1)th job will not be late if
and only if the sum of processing times of the remaining jobs of T[i + 1, W] plus p;41 is less
than d;11. This is because we are storing the feasible subset which takes the minimum total
processing time. Furthermore, t[i, W — w; 1] + p;+1 must be at most ¢[i, W], for otherwise,
T[i, W] has smaller processing time. Therefore, the (i 4+ 1)th job is in T[i + 1, W] if and only
if t[i, W — wip1] + piv1 < djp1 and t[i, W — w1 4 piv1 < ti, W] . If the (i + 1)th job is not
in T[i + 1, W], then T[i + 1, W] = T[i, W].

Tli, W —wiq] U (i +1)
Ti, W)

if t[’L, W — wi+1] +pi+1 § di+1 and t[l, W — wH_l] +pi+1 § t[l, W]

T+ 1, W] =
[ ] { otherwise

(1)



Theorem 0.1. The above dynamic program gies the optimal schedule for (1| w;U;) in
time O(nlogn +n3_, w;j).

3. (242+42) For each of the statements, write true or false giving reasons.

e [f X <pYandY <p Z, then X <p Z.
e If X <pY and Y is NP-hard then X is NP-hard.

e Let X be a problem in the class NP. If P £ NP, then X cannot be solved in polynomial
time.

Solution:

e True. Suppose Z can be solved in time T'(|Z]). As Y <p Z, there exist two polyno-
mials 7, s such that Y can be solved in time r(|Y]) + s(]Y)T(|Y]). As X <p Y, there
exist two polynomials p, ¢ such that X can be solved in time p(|X|) + ¢(|X|)(r(|X]) +
SIXDT(XD) = #/(1X]) + ¢ (XNT(X]), where /() = p() + g()r() and ¢'() = g()s() are
polynomials. Hence X <p Z.

e False. The assertion shows that Y is harder than X, and not vice-versa, which is what
we need. This is trivially reducible to any problem Y, but it is not NP-hard.

e False, as ) # P C NP. For example, consider an instance of (1|| >~ C;) and the problem
of determining if there exists a schedule of value at most B. This problem is in NP and
can be solved in polynomial time, independently of whether P=NP or not.

4. (343)

(a) The HPP (Hamiltonian path problem) is the following: given a graph G is there a simple
path which contains every vertex of G. Recall that HC P (Hamiltonian cycle problem) was
given a graph G, if there is a cycle containing each vertex of G. Show that HCP <p HPP.

Solution: We can assume that the number of vertices is greater than 4 for otherwise one
can solve HC'P in constant time. Suppose we have a polynomial time algorithm A for
HPP. Given a graph G, we now show how to use A to get a polynomial time algorithm
for HCP. If there is a hamiltonian cycle in G, then since there are at least 4 vertices for
every vertex u there must be distinct vertices w, v,z such that (w,u), (u,v), (v, z) are all
edges of G and are in the hamiltonian cycle. Now look at the graph H obtained from G
by deleting all edges incident to u and v except the edge (w,u) and (v,z). Thus, in the
new graph H, the vertices u and v have degree 1. Now run the algorithm A on H. If
there exists an hamiltonian path P, then since u and v are vertices of degree 1, they must
be the end points. Thus the cycle P U (u,v) is a hamiltonian cycle in G. Furthermore,
if G has a hamiltonian cycle, then for at least one choice of w,v,z, the graph H would
have a hamiltonian path.

Algorithm:

i. Pick any vertex u of G.

ii. For all neighbor v of w, for all neighbors x of v & # w, and for all neighbors w of u
such that w # v,z (Note there are at most O(n?) (actually much better) iterations
and thus this algorithm is polynomial time)

e Construct graph H by deleting all edges in G incident to u and v except the edges
(w,u) and (z,v).
e Run algorithm A on H. If A returns yes, return yes.
iii. If A returns no on all iterations above, return no.

(b) In class we saw that HCP <p T'SP which showed that T'SP was NP-hard. Show that it
is NP-hard to obtain a tour of total length at most SC* for any 8 > 0, where C* is the



length of the optimal tour.

Solution: Given an instance of the HC' P problem, construct an instance of TSP by
setting distances d(i,7) = 0 if (4,7) is an edge, and d(i,5) = 1 if (4,7) is not an edge.
In the YES instance of HC'P, the optimum TSP solution is 0. Furthermore, any TSP
solution of length 0 corresponds to a hamiltonian cycle. If there were a polynomial time
algorithm which returned a tour of length at most SC*, then in the YES case it would have
still returned a solution of length 0. Therefore, the hamiltonian cycle instance is a YES
instance if and only if the algorithm returned a tour of length 0. Thus HCP <p “3"-TSP.

(a) (3)
Show that the problem (1|r;|Ly,qe) is NP-hard by reducing it to the partition problem
done in class. (Hint: Given an instance of the partition problem, construct an instance
of jobs with release dates such that if there is a partition no job is late, if there is no
partition, at least one job is late)

Solution Given an instance of partition: {ai,...,a,} such that >, a;, = 2B, construct
an instance of (1|7j|Lmaz) with n + 1 jobs. Jobs 1 to n have processing times p; = a;,
release date r; = 0 and due date d; = 2B + 1. Job (n+ 1) has processing time p,,+1 = 1,
release date r,41 = B and due date d,,+1 = B + 1. We claim that there is a partition of
the numbers {ay,...,a,} if and only if there is a schedule which finishes all jobs on time.

If there is a partition S of the numbers which add up to exactly B, then the schedule
which processes jobs corresponding to S, then job (n+ 1) and then jobs in {1,...,n}\ S
will finish every job in time and start job (n+1) at time B. In the other direction, if there
is a schedule which finishes all jobs on time, then it must start job (n+ 1) at time B and
end it at time (B +1). Furthermore, there cannot be any idle time as the due-dates of all
other jobs is 2B + 1 which equals the sum of processing times. Thus, the jobs scheduled
before job (n + 1) must have processing times exactly adding up to B. This will imply
the partition.
(b) (3)

The above only shows that (1|7;|Lyqz) is weakly NP-hard since partition is only a weakly
NP-hard problem. Show that (1|rj|Lmaes) is strongly NP-hard by reducing it to BIN
PAcCkKING which is a strongly NP-hard problem.

BIN PACKING: Given k items with sizes (aq,...,ax) and ¢ bins each of capacity B,
can one partition the items into the ¢ bins such that the total size of the items in any bin
is at most B.

(Hint: Given an instance of BIN PACKING construct an instance with k + (t — 1) jobs,
where the first k jobs correspond to the sizes and the last (t — 1) jobs “partition” the jobs
into bins.)

Solution: Given an instance of bin-packing construct an instance of the machine scheduling
problems with n = k + (¢ — 1) jobs denoted as «aq,...,ax and B,...,0:;—1. The processing
time of job «; is a; and the processing time of job 3; is 1. The release dates of all a; jobs is
0 and release dates of job f; is iB + (i — 1). The due date of all a; jobs is tB + (¢t — 1) and
the due date of §; is iB + i. We claim that there is a schedule which finishes all jobs in time
if and only if the bin-packing instance has a feasible solution.

Suppose the bin-packing instance has a feasible solution, that is there exists a partition
Jiy.ooJy of {1,...,k} such that >0, ; a; < B forall i € {1,...,t}. Then we can sched-
ule first the jobs «j, for j € Ji, then job £, then jobs a; for j € Ja, then job 3> and
so on. As EjeJi p; < B for all i € {1,...,¢}, each job f; can start at its release time
and end by the due date. Moreover, the last job o; to complete will complete by time
(t—1)B+t—1+B=tB+(t—1).



Now suppose there is a schedule which finishes all the jobs in time. This implies that every
job f; is processed between time iB + (i — 1) and time iB + 4. For every ¢ € {1,...,t} let J;
define the set of indeces of jobs o processed after §;_; and before §;. As there is no overlap
between jobs, for every i we have > . ; p; <iB+(i—1)—[(i—1)B+ (i —2)+1] = B, so
J1,...,J¢ is a feasible solution to the bin-packing problem.



