
Scheduling Theory CO 454, Spring 2009

Homework 4
Due: June 30th, 2009

Solutions

1. (6)
Give an optimal algorithm to solve (P |pmtn|Cmax), that is, minimizing makespan on identical
parallel machines when preemption is allowed. Justify optimality. (Hint: Think of the lower
bounds done in class)

Solution: Note that we know OPT ≥ max{ 1
m

∑
pj , pmax}. Call the second term D. We now

show that if preemption is allowed, then there exists a schedule with Cmax = D and thus will
be an optimal algorithm.

This can be achieved by what is called McNaughton’s wrap-around rule.

Order the jobs arbitrarily. Place the jobs on the machines in order, filling up machine
i until time D has been reached. Then split job j onto machine i and i + 1.

Since D ≥ pj ∀j, job j can be split onto at most two machines i and i1, and will not be
processed on machines i and i + 1 at the same time. Since

∑
pj units of processing time are

needed and a schedule of length D ≥ 1
m

∑
pj allows for

∑
pj processing time units, every job

gets scheduled.

Theorem 0.1. McNaughton’s wrap-around rule gives an optimal schedule for Pm|pmtn|Cmax.

Proof. The schedule is feasible: no job is scheduled at the same time on different machines.

The schedule is optimal: the schedule has length Cmax = D = max
{

1
m

∑
pj , max{pj}

}
which

is in turn at most both our lower bounds.

2. (6+6)
We saw that List-Scheduling returned a schedule with CS

max ≤ (2 − 1/m)OPT . Find an ex-
ample of an ordering of jobs such that the above inequality holds with equality. Recall we did
for m = 2 in class.

Solution: Let there be m(m − 1) jobs of processing time 1 each, and one job of processing
time m, in that order. OPT will process the m-job on one machine, and m jobs of processing
time 1 on each of the m− 1 machines. So OPT = m. List scheduling, on the other hand, will
process m − 1 jobs of processing time 1 on each of the m machines, and therefore, will take
time Cmax = 2m− 1.

We saw that LPT returned a schedule with CS
max ≤ (4/3 − 1/3m)OPT . Find an example of

an ordering of jobs such that the above inequality holds with equality. Recall we did m = 2 in
class.

Solution: Consider three jobs with times m, and two jobs each of times m+1, m+2, . . . , 2m−1.
There are 2m + 1 jobs in all. The optimum is 3m. Machine 1 processes the three m jobs,
machine i for i > 1 processes jobs with processing times m + i− 1 and 2m− i + 1. Check that
all jobs are processed.

1

What does LPT do? It processes the two jobs of length 2m− 1 on the first two machines, the
two jobs of length 2m − 2 on second two, and then if m is even and m = 2k, processes jobs
of length 2m − k on machine m − 1 and m. Following that, it goes down this order putting
in the jobs. Thus, when the first 2m jobs are filled, each machine will have exactly 3m − 1
processing time. The last m will make Cmax = 4m− 1.

3. Consider the LPT algorithm for (P ||Cmax). If the machine i which processes the job which
finishes last, processes k other jobs, then LPT returns a k+1

k algorithm.

Solution: Let ` be the job that finishes last and let i process it. Since there are k other jobs
scheduled on machine i before `, the total load on machine i at the time job ` starts is at least
kp`. Since machine i has the least load at this time, the total load on all machines is at least
mkp`. Thus, OPT ≥ kp`, implying p` ≤ OPT/k.

The analysis of list scheduling gives us that

CS
max ≤ OPT + (1− 1/m)p` ≤

k + 1
k

OPT

.

4. In class, we saw that list scheduling (using any order of the jobs) is a 2-approximation for
P ||Cmax. Consider the problem with l release dates, P |rj |Cmax.

(a) Generalize the lower bound OPT ≥ pj ∀j to take into account the release times rj for
the jobs.

(b) Consider the following list scheduling rule:

Whenever a machine becomes available, schedule an available, unprocessed job.

Show that this rule results in a 2-approximation for P |rj |Cmax.

Solution: a) OPT ≥ pj + rj .
b) Consider the machines between time r` and t`. None of the machines can be idle since
otherwise ` would’ve started processing earlier. Therefore,

m(t` − r`) ≤
n∑

j=1

pj

and so,

CS
max = p` + t` ≤ pl + rl +

1
m

n∑
j=1

pj ≤ 2OPT

2

