
Scheduling Theory CO 454, Spring 2009

Homework 5
Due: July 21st, 2009

(Total 30)

1. (6 marks)
State if the following statements are true or false. If true, prove it. If false, give a counter-
example.

• (3) If the number of jobs n < 2m, then LPT returns an optimal solution to (P ||Cmax).
Solution: False. Consider the instance with m = 4 machines, and n = 7 jobs with times
(6, 6, 3, 3, 2, 2, 2). LPT gives a schedule of makespan 7, and the optimum is 6.

• (3) If the number of jobs n > km, then LPT returns a k+1
k factor approximation algo-

rithm.
Solution: False. Consider the instance with m = 2 machines and 15 jobs – 5 jobs have
times (300, 300, 200, 200, 190) and 10 jobs with processing times 1. Thus with k = 7,
n > km. If the above were true, LPT should have returned a 8/7 factor algorithm.
Optimum is 600, which processes the first two on one machine, and the remaining 13
on the second machine. LPT returns a schedule with makespan 690. 690/600 > 8/7
falsifying the statement.

2. (8 marks)
Consider the following generalization of list-scheduling for minimizing makespan in unrelated
machines (R||Cmax).

Let J = {1, 2, . . . , n} be an arbitrary ordering of the jobs and process the jobs in this
order. When job j is being processed, schedule it on the machine on which it will
finish the first, that is, the one which minimizes Cj. Thus, if loadj(i) is the sum of
processing times of all jobs from {1, . . . , j} assigned to machine i, then schedule job
j on the machine which minimizes

loadj(i) + pij

Note that Cmax = maxi loadn(i).

• (2) Run the above algorithm on the following instance of (R||Cmax). The entry in the ith
row and jth column is pij. Assume the order is (1, 2, 3, 4).

Job 1 Job 2 Job 3 Job 4
M/c 1 1 2 4 4
M/c 2 3 1 3 4
M/c 3 2 3 4 3

Solution: In this order, the jobs are scheduled as follows. Job 1 goes to machine 1, Job
2 to machine 2, Job 3 to Machine 2, and Job 4 to machine 3. Makespan is 4 on machine 2.

(2)Does this return an optimal schedule? Is there any order such that running the above
algorithm on that order will lead to an optimal schedule?
Solution: No, this is not optimal. The optimal schedule processes jobs 1 and 2 on ma-
chine 1, job 3 on machine 2 and job 4 on machine 3 to get optimal makespan of 3.

If the order is (4, 3, 2, 1), then the above algorithm returns the optimal solution.

1

• (4) Show that for any constant B > 1, there is an example of an instance and an order of
the jobs such that the above algorithm returns a schedule with makespan Cmax ≥ B ·OPT .
That is, the above algorithm is not a constant factor algorithm.

Solution: Consider the instance with (2B + 1) jobs j1, . . . , j2B+1 and 2B + 1 machines
1, . . . , 2B + 1. The processing times are as follows. Let ε ≤ 1/B. Job j1 takes time 1 + ε
on machine 1 and ∞ on all other machines. Job j2 takes time 1 on machine 1 and time 2
on machine 2, and ∞ on all others. Job j3 takes time 1 + ε on machine 2 and time 3 on
machine 3, and ∞ on all others. In general, for r > 2 job jr takes time 1 + ε on machine
r − 1 and time r on machine r, ∞ on all others.

The optimum solution is to schedule jobs j1 and j2 on machine 1, and job jr for r ≥ 3 on
machine (r − 1). The makespan is 2 + ε.
If the order is (1, 2, 3, . . . , 2B + 1), then job 1 will be processed on machine 1, job 2 will
be processed on machine 2 (since it completes earlier there), job 3 on machine 3, and
in general job r on machine r, giving a makespan of 2B + 1. Thus, Cmax = 2B + 1 ≥
B(2 + ε) = B ·OPT .

3. (10 marks)
In this question, we will develop a (2− 1

m)-algorithm for makespan minimization in uniformly
related machines (Q||Cmax). Recall, in this problem, jobs have processing time (p1, . . . , pn)
and machines have speeds (s1, . . . , sm), and the time taken by machine i to process job j is pj

si
.

The goal is to minimize the completion time of the last job.

Suppose we order the machines in decreasing order of speeds: s1 ≥ s2 ≥ · · · ≥ sm. Consider
the following extension of the longest processing time rule:

Order the jobs in decreasing processing time order. p1 ≥ p2 ≥ · · · ≥ pn = pmin. In
this order, schedule job j on the machine in which it will finish the first. Thus, if
loadj(i) is the sum of processing times of all jobs from {1, . . . , j} assigned to machine
i, then schedule job j on the machine which minimizes

loadj(i) +
pj

si

(a) (1) Suppose the optimum schedule doesn’t assign any job to machine i. Argue that the
optimum schedule doesn’t assign any jobs to machines i+ 1, i+ 2, . . . ,m, either.

Solution: If the optimum solution assigned any job to machine i′ with i′ > i, then
moving all those jobs to machine i will decrease their completion times since i is faster
than i′.

(b) (1+2) (Lower Bounds) Following part (a), suppose the optimum schedule assigns jobs to
machines (1, 2, . . . , k). Show that
• OPT ≥ pmin

sk

• OPT ≥
Pn

j=1 pjPk
i=1 si

Note that these generalize the lower bounds which we had for (P ||Cmax).

Solution: Since machine k processes at least one job, and that job has processing time
at least pmin, the time taken by machine k is at least pmin

sk
.

Let J1, J2, . . . , Jk be the set of jobs processed by machines 1 to k. Let p(Ji) :=
∑

j∈Ji
pj .

Note that

OPT = max
i

p(Ji)
si

2

Therefore,

OPT ≥
∑k

i=1

∑
j∈Ji

pj∑k
i=1 si

=

∑n
j=1 pj∑k
i=1 si

(c) (1) As done for the analysis of LPT, argue that we can assume the last job to finish is
n, the job with the minimum processing time.

Solution: If the last job j is not the job n, then consider the instance with jobs
(1, 2, . . . , j). LPT returns the same schedule while optimum decreases. If we can prove
LPT is a factor 2 in this instance, then LPT (1, . . . , n) = LPT (1, . . . , j) ≤ 2OPT (1, . . . , j) ≤
2OPT (1, . . . , n), implying LPT is a factor 2 in the original instance as well.

(d) (2) Let ` be the machine which processes job n. Let tn be the time when job n was started
on machine `. Let load(i) be the total time taken by jobs from 1 to n − 1 on machine i.
Show, using the definition of the algorithm,

load(i) ≥ tn +
pn

s`
− pn

si

Solution: Since job n is processed on machine `, it must be by the running of the
algorithm that ` minimizes

load(i) +
pn

si

over all machines i, and therefore,

load(`) +
pn

s`
≤ load(i) +

pn

si

for all i. The proof is complete by noting that load(`) = tn.

(e) (3) Show, using the upper bounds of part (b) and using part (d), that the completion time
of job n,

Cn = tn +
pn

s`
≤ (2− 1

m
)OPT

Solution: Note that
∑k

i=1 si × load(i) is the total processing times of all jobs processed
in machines 1 to k by the algorithm. This is at most

∑n
j=1 pj − pn. This gives us

n∑
j=1

pj − pn ≥
k∑

i=1

si × load(i)

≥
k∑

i=1

si(tn +
pn

s`
− pn

si
) = (tn +

pn

s`
)(

k∑
i=1

si)−
k∑

i=1

si
pn

si

= Cn(
k∑

i=1

si)− kpn

Rearranging,

Cn ≤
∑n

j=1 pj∑k
i=1 si

+ (k − 1)
pn∑k
i=1 si

Now, from part (b), we get the first term is less than OPT , and that the second term,
since s1 ≥ · · · ≥ sk, can be written as

k − 1
k

kpn∑k
i=1 si

≤ (1− 1
k

)
kpn

ksk
≤ (1− 1

k
)OPT

3

Adding, we get

Cn ≤ (2− 1
k

)OPT ≤ (2− 1
m

)OPT

since k ≤ m.

4. (6 marks)
Consider the following graph balancing problem. We are given a undirected graph G = (V,E)
with weights w(e) on the edges. Orienting an edge (u, v) of the graph is to make the edge
directed, either as (u → v) or (v → u). A complete orientation of the edges in E leads to a
digraph D = (V,A) where A are the oriented arcs.

The objective is to find an orientation which minimizes the maximum weighted in-degree of
a vertex. That is, given a vertex v, let Ev be the set of edges incident on v which have been
oriented towards v. Then, the goal is to minimize

max
v∈V

∑
e∈Ev

w(e)

Cast this problem as a problem of minimizing makespan in unrelated machines (R||Cmax), and
therefore argue that there is a 2-approximation for the problem.

Solution: Think of the vertices as machines and edges as jobs. Each job (edge) can go to
exactly two machines (the end points) and has processing time w(e) on both of them. If job
(u, v) (edge) is assigned to machine (vertex) v, orient the edge towards v. Thus a schedule
leads to an orientation. The minimum weighted in-degree of the orientation is precisely the
makespan of the schedule.

Conversely, by a similar argument, given an orientation we can get a schedule whose makespan
equals the weighted in-degree.

4

