Matousek’s Proof of the Johnson-Lindenstrauss Lemma

The reference for this note is “On Variants of the Johnson-Lindenstrauss Lemma” by J. Matousek.

Theorem 0.1. (Johnson-Lindenstrauss Lemma.) Given any n points (vy,...,v,) in R and any ¢ €
(0,1/2), there exists a mapping ® : R — R¥ where k < 200;# such that

Vi,j (1 —=e)lfvi = vjlla < [|@(vi) — D(vj)l2 < (1 +&)lvi — vj]2

The mapping is indeed a “random linear transformation”, that is, ®(x) = Ax where each entry of A
is a suitable random variable. Before going into this, let us review what are called subgaussian random
variables, and the proof will then follow in less than half a page.

0.1 Subgaussian Random Variables

Let’s start by calculating the moment generating function of a gaussian Z ~ N (0, 0?).
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Motivated by this, here’s the standard definition of subgaussian random variables.

Definition 1. A random variable 7 is said to be o-subgaussian, if for allt € R
E[c] <e (1)
A random variable Z is said to be o-subgaussian up to to if (1) holds for all |t| < t.

Lemma 1. (Subgaussian Random Variables and Concentration.) If Z is o-subgaussian up to ty, then
2

Pr[|Z] > u] < 2”202 for 0 < u < oty

Proof. This is the usual Chernoff step:

Pr[Z > u] = Pre? > '] for positive ¢
< e WE[e!] as long as t < ty
t202
S e—tue )
Setting t := u/0? < tgif u < 0ty, we get the upper tail, and the lower tail is similar. O

Examples of Subgaussian RVs. The Gaussian Z ~ N(0,02) is by definition subgaussian. Bounded
random variables are subgaussian. More generally, if | Z| < b, then Z is b-subgaussian.



Moments of Subgaussian RVs.

e Higher Even Moments. Let Z be o-subgaussian.
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In the first equality we use the following formula: if Z is a non-negative rv, and h is a differentiable
function, then

E[h(Z)] = /000 h(z)f(x)dx = h(0) + /000 B (x) Pr[X > z]dx

One can see by integrating the second term in the RHS by parts.

Lemma 2. (Linear combination of subgaussian random variables.) Let X, ..., Xy be a collection of
independent random variables, such that each X; is o;-subgaussian up to ty. Let Y = Z?Zl w; X;. Then'Y

. _ . . _ k
is a o-subgaussian random variable up to to/Wmaz, Where Wipq, = max; w; and & := 1/ Zi:l wizai?.

Proof.

n no 2,29 2 2571 w2e2
E[ety] = HE[etwiXi] < He S = 2
i=1 i=1
as long as tw; < tg, that is, t < to/wj; for all 4. O

Corollary 0.2. (Average of Subgaussian RVs.) Ler X1, ..., X}, be mutually independent, o-subgaussian
random variable up to tg. Then X := % Zle X;isa ﬁ—subgaussian random variable up to kt.

Lemma 3. (Square of a subgaussian random variable.) Let X be a o-subgaussian random variable.
Then the centred random variable Z := X* — E[X?] is a \/3202-subgaussian random variable up to ﬁ.

Proof. This uses the higher even moments of X which we computed earlier.
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Thus, )
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implying Z is v/3202-subgaussian up tp ﬁ. 0

0.2 Proof of Johnson Lindenstrauss.

Now we have all the tools. Let 12 be a k x n random matrix where each entry R;; is a o-subgaussian random
variable with variance = 1 < o2, In particular, we can choose R;; ~ N(0,1) which would give 0 = 1. Let
A= ﬁ - R be the scaled version of it, and define ®(z) = Az. We show the following

Vz,||z|| = 1, we have with probability > 1 — 1/n3, (1 —&)||z||2 < ||Az|]2 < (1 +&)||z]l2 (¥

By union bound, we ge that with probability > 1 — 1/n, the above holds for x = (v; — v;)/||v; — vj|| for
all pairs, which implies the JLT.
Fix an unit vector z. Fori = 1,...,k,letY; = 377 | R;jz;. Observe that E[Y?] = > I | 27E[R2] =

ij
-LY;, and so

where we used that the variance of each R;; is exactly 1 and ||z||2 = 1. Note that (Ax); : VAL

k
|Az|5 = %Ei:l YiQ-
We need to show that the following event occurs wp > 1 — 2/n3.
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By Lemma 2, each Y; is also a o-subgaussian random variable because ||z||o = 1. So, by Lemma 3, each
Z; =Y? - E[Y? =Y? - 1isa/3202-subgaussian rv till ty) = ﬁ. Therefore, by Corollary 0.2,

Z =1 Zle Z; is a v/320% /\/k-subgaussian random variable up to %
and therefore, by Lemma 1, we get

_ ke 32 k
Pr[|Z| > ¢] < 2e 61104 Ve < TO LY g2

Therefore, if k > 200”{:&, we get that Pr[|Z| > ¢] < 2/n3, proving (¥).
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