Matousek's Proof of the Johnson-Lindenstrauss Lemma

The reference for this note is "On Variants of the Johnson-Lindenstrauss Lemma" by J. Matousek.

Theorem 0.1. (Johnson-Lindenstrauss Lemma.) Given any n points (v_1, \ldots, v_n) in \mathbf{R}^d and any $\varepsilon \in (0, 1/2)$, there exists a mapping $\Phi : \mathbf{R}^d \to \mathbf{R}^k$ where $k \leq \frac{200 \log n}{\varepsilon^2}$ such that

$$\forall i, j \quad (1 - \varepsilon) ||v_i - v_j||_2 \le ||\Phi(v_i) - \Phi(v_j)||_2 \le (1 + \varepsilon) ||v_i - v_j||_2$$

The mapping is indeed a "random linear transformation", that is, $\Phi(x) = Ax$ where each entry of A is a suitable random variable. Before going into this, let us review what are called subgaussian random variables, and the proof will then follow in less than half a page.

0.1 Subgaussian Random Variables

Let's start by calculating the moment generating function of a gaussian $Z \sim N(0, \sigma^2)$.

$$\mathbf{E}[e^{tZ}] = \frac{1}{\sigma\sqrt{2\pi}} \int_{\infty}^{\infty} e^{tz} \cdot e^{-z^2/2} dz$$
$$= e^{\frac{t^2\sigma^2}{2}}$$

Motivated by this, here's the standard definition of subgaussian random variables.

Definition 1. A random variable Z is said to be σ -subgaussian, if for all $t \in \mathbf{R}$

$$\mathbf{E}[e^{tZ}] \le e^{\frac{t^2 \sigma^2}{2}} \tag{1}$$

A random variable Z is said to be σ -subgaussian up to t_0 if (1) holds for all $|t| \leq t_0$.

Lemma 1. (Subgaussian Random Variables and Concentration.) If Z is σ -subgaussian up to t_0 , then $\Pr[|Z| > u] \le 2e^{-\frac{u^2}{2\sigma^2}}$ for $0 < u < \sigma^2 t_0$.

Proof. This is the usual Chernoff step:

$$\Pr[Z > u] = \Pr[e^{tZ} > e^{tu}] \qquad \text{for positive } t$$
$$\leq e^{-tu} \mathbf{E}[e^{tZ}] \qquad \text{as long as } t \leq t_0$$
$$\leq e^{-tu} e^{\frac{t^2 \sigma^2}{2}}$$

Setting $t := u/\sigma^2 \le t_0$ if $u < \sigma^2 t_0$, we get the upper tail, and the lower tail is similar.

Examples of Subgaussian RVs. The Gaussian $Z \sim N(0, \sigma^2)$ is by definition subgaussian. Bounded random variables are subgaussian. More generally, if $|Z| \leq b$, then Z is b-subgaussian.

Moments of Subgaussian RVs.

• Higher Even Moments. Let Z be σ -subgaussian.

$$\mathbf{E}[Z^{2k}] = \mathbf{E}[|Z|^{2k}] = \int_0^\infty (2k)t^{2k-1} \Pr[|Z| \ge t] dt$$

$$\le 4k \int_0^\infty t^{2k-1} e^{-t^2/2\sigma^2} dt$$

$$= 2k (2\sigma^2)^k \int_0^\infty x^{k-1} e^{-x} dx \quad \text{change of variable: } x = t^2/2\sigma^2$$

$$= 2 (2\sigma^2)^k k!$$
(2)

In the first equality we use the following formula: if Z is a non-negative rv, and h is a differentiable function, then

$$\mathbf{E}[h(Z)] = \int_0^\infty h(x)f(x)dx = h(0) + \int_0^\infty h'(x)\Pr[X \ge x]dx$$

One can see by integrating the second term in the RHS by parts.

Lemma 2. (Linear combination of subgaussian random variables.) Let X_1, \ldots, X_k be a collection of independent random variables, such that each X_i is σ_i -subgaussian up to t_0 . Let $Y = \sum_{i=1}^n w_i X_i$. Then Y is a $\bar{\sigma}$ -subgaussian random variable up to t_0/w_{max} , where $w_{max} = \max_i w_i$ and $\bar{\sigma} := \sqrt{\sum_{i=1}^k w_i^2 \sigma_i^2}$. *Proof.*

$$\mathbf{E}[e^{tY}] = \prod_{i=1}^{n} \mathbf{E}[e^{tw_i X_i}] \le \prod_{i=1}^{n} e^{\frac{\sigma_i^2 t^2 w_i^2}{2}} = e^{\frac{t^2 \sum_{i=1}^{k} w_i^2 \sigma_i^2}{2}}$$

as long as $tw_i \leq t_0$, that is, $t \leq t_0/w_i$ for all *i*.

Corollary 0.2. (Average of Subgaussian RVs.) Let X_1, \ldots, X_k be mutually independent, σ -subgaussian random variable up to t_0 . Then $X := \frac{1}{k} \sum_{i=1}^{k} X_i$ is a $\frac{\sigma}{\sqrt{k}}$ -subgaussian random variable up to kt_0 .

Lemma 3. (Square of a subgaussian random variable.) Let X be a σ -subgaussian random variable. Then the centred random variable $Z := X^2 - \mathbf{E}[X^2]$ is a $\sqrt{32}\sigma^2$ -subgaussian random variable up to $\frac{1}{4\sigma^2}$.

Proof. This uses the higher even moments of X which we computed earlier.

$$\begin{split} \mathbf{E}[e^{tX^2}] &= \sum_{k=0}^{\infty} \frac{t^k \mathbf{E}[X^{2k}]}{k!} \\ &= 1 + t \mathbf{E}[X^2] + \sum_{k \ge 2} \frac{t^k \mathbf{E}[X^{2k}]}{k!} \\ &\leq 1 + t \mathbf{E}[X^2] + 2 \sum_{k \ge 2} \frac{t^k}{k!} \cdot (2\sigma^2)^k k! \quad \text{see higher moments previously bounded} \\ &= 1 + t \mathbf{E}[X^2] + 2 \sum_{k \ge 2} (2t\sigma^2)^k = 1 + t \mathbf{E}[X^2] + 8t^2\sigma^4 \sum_{k \ge 0} (2t\sigma^2)^k \\ &\leq 1 + t \mathbf{E}[X^2] + 16t^2\sigma^4 \quad \text{if } t < t_0 = \frac{1}{4\sigma^2} \\ &< e^{-t \mathbf{E}[X^2] + 16t^2\sigma^4} \end{split}$$

Thus,

$$\mathbf{E}[e^{tZ}] = e^{-t\mathbf{E}[X^2]}\mathbf{E}[e^{tX^2}] \le e^{-\frac{32t^2\sigma^4}{2}} \quad \forall |t| \le \frac{1}{4\sigma^2}$$

implying Z is $\sqrt{32}\sigma^2$ -subgaussian up tp $\frac{1}{4\sigma^2}.$

0.2 Proof of Johnson Lindenstrauss.

Now we have all the tools. Let R be a $k \times n$ random matrix where each entry R_{ij} is a σ -subgaussian random variable with variance $= 1 \le \sigma^2$. In particular, we can choose $R_{ij} \sim N(0, 1)$ which would give $\sigma = 1$. Let $A := \frac{1}{\sqrt{k}} \cdot R$ be the scaled version of it, and define $\Phi(x) = Ax$. We show the following

$$\forall x, ||x|| = 1$$
, we have with probability $\geq 1 - 1/n^3$, $(1 - \varepsilon)||x||_2 \leq ||Ax||_2 \leq (1 + \varepsilon)||x||_2$ (*)

By union bound, we ge that with probability > 1 - 1/n, the above holds for $x = (v_i - v_j)/||v_i - v_j||$ for all pairs, which implies the JLT.

Fix an unit vector x. For i = 1, ..., k, let $Y_i = \sum_{j=1}^n R_{ij}x_j$. Observe that $\mathbf{E}[Y_i^2] = \sum_{i=1}^n x_i^2 \mathbf{E}[R_{ij}^2] = 1$ where we used that the variance of each R_{ij} is exactly 1 and $||x||_2 = 1$. Note that $(Ax)_i := \frac{1}{\sqrt{k}}Y_i$, and so $||Ax||_2^2 = \frac{1}{k}\sum_{i=1}^k Y_i^2$.

We need to show that the following event occurs wp $\geq 1 - 2/n^3$.

$$\mathcal{E} := \{ (1 - 2\varepsilon) \le \frac{1}{k} \sum_{i=1}^{k} Y_i^2 \le (1 + 2\varepsilon) \} \text{ or equivalently } \{ \left| \frac{1}{k} \sum_{i=1}^{k} (Y_i^2 - 1) \right| \le 2\varepsilon \}$$

By Lemma 2, each Y_i is also a σ -subgaussian random variable because $||x||_2 = 1$. So, by Lemma 3, each $Z_i = Y_i^2 - \mathbf{E}[Y_i^2] = Y_i^2 - 1$ is a $\sqrt{32}\sigma^2$ -subgaussian rv till $t_0 = \frac{1}{4\sigma^2}$. Therefore, by Corollary 0.2,

$$Z := \frac{1}{k} \sum_{i=1}^{k} Z_i$$
 is a $\sqrt{32}\sigma^2 / \sqrt{k}$ -subgaussian random variable up to $\frac{k}{4\sigma^2}$.

and therefore, by Lemma 1, we get

$$\Pr[|Z| > \varepsilon] \le 2e^{-\frac{k\varepsilon^2}{64\sigma^4}} \quad \forall \varepsilon \le \frac{32\sigma^4}{k} \cdot \frac{k}{4\sigma^2} = 8\sigma^2$$

Therefore, if $k \geq \frac{200\sigma^2 \cdot \log n}{\varepsilon^2}$, we get that $\Pr[|Z| > \varepsilon] < 2/n^3$, proving (*).