
Matousek’s Proof of the Johnson-Lindenstrauss Lemma

The reference for this note is “On Variants of the Johnson-Lindenstrauss Lemma” by J. Matousek.

Theorem 0.1. (Johnson-Lindenstrauss Lemma.) Given any n points (v1, . . . , vn) in Rd and any ε ∈
(0, 1/2), there exists a mapping Φ : Rd → Rk where k ≤ 200 logn

ε2
such that

∀i, j (1− ε)||vi − vj ||2 ≤ ||Φ(vi)− Φ(vj)||2 ≤ (1 + ε)||vi − vj ||2

The mapping is indeed a “random linear transformation”, that is, Φ(x) = Ax where each entry of A
is a suitable random variable. Before going into this, let us review what are called subgaussian random
variables, and the proof will then follow in less than half a page.

0.1 Subgaussian Random Variables

Let’s start by calculating the moment generating function of a gaussian Z ∼ N(0, σ2).

E[etZ ] =
1

σ
√

2π

∫ ∞
∞

etz · e−z2/2dz

= e
t2σ2

2

Motivated by this, here’s the standard definition of subgaussian random variables.

Definition 1. A random variable Z is said to be σ-subgaussian, if for all t ∈ R

E[etZ ] ≤ e
t2σ2

2 (1)

A random variable Z is said to be σ-subgaussian up to t0 if (1) holds for all |t| ≤ t0.

Lemma 1. (Subgaussian Random Variables and Concentration.) If Z is σ-subgaussian up to t0, then

Pr[|Z| > u] ≤ 2e−
u2

2σ2 for 0 < u < σ2t0.

Proof. This is the usual Chernoff step:

Pr[Z > u] = Pr[etZ > etu] for positive t

≤ e−tuE[etZ ] as long as t ≤ t0

≤ e−tue
t2σ2

2

Setting t := u/σ2 ≤ t0 if u < σ2t0, we get the upper tail, and the lower tail is similar.

Examples of Subgaussian RVs. The Gaussian Z ∼ N(0, σ2) is by definition subgaussian. Bounded
random variables are subgaussian. More generally, if |Z| ≤ b, then Z is b-subgaussian.
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Moments of Subgaussian RVs.

• Higher Even Moments. Let Z be σ-subgaussian.

E[Z2k] = E[|Z|2k] =

∫ ∞
0

(2k)t2k−1 Pr[|Z| ≥ t]dt

≤ 4k

∫ ∞
0

t2k−1e−t
2/2σ2

dt

= 2k
(
2σ2
)k ∫ ∞

0
xk−1e−xdx change of variable: x = t2/2σ2

= 2
(
2σ2
)k
k! (2)

In the first equality we use the following formula: if Z is a non-negative rv, and h is a differentiable
function, then

E[h(Z)] =

∫ ∞
0

h(x)f(x)dx = h(0) +

∫ ∞
0

h′(x) Pr[X ≥ x]dx

One can see by integrating the second term in the RHS by parts.

Lemma 2. (Linear combination of subgaussian random variables.) Let X1, . . . , Xk be a collection of
independent random variables, such that each Xi is σi-subgaussian up to t0. Let Y =

∑n
i=1wiXi. Then Y

is a σ̄-subgaussian random variable up to t0/wmax, where wmax = maxiwi and σ̄ :=
√∑k

i=1w
2
i σ

2
i .

Proof.

E[etY ] =
n∏
i=1

E[etwiXi ] ≤
n∏
i=1

e
σ2i t

2w2
i

2 = e
t2

∑k
i=1 w

2
i σ

2
i

2

as long as twi ≤ t0, that is, t ≤ t0/wi for all i.

Corollary 0.2. (Average of Subgaussian RVs.) Let X1, . . . , Xk be mutually independent, σ-subgaussian
random variable up to t0. Then X := 1

k

∑k
i=1Xi is a σ√

k
-subgaussian random variable up to kt0.

Lemma 3. (Square of a subgaussian random variable.) Let X be a σ-subgaussian random variable.
Then the centred random variable Z := X2 − E[X2] is a

√
32σ2-subgaussian random variable up to 1

4σ2 .

Proof. This uses the higher even moments of X which we computed earlier.

E[etX
2
] =

∞∑
k=0

tkE[X2k]

k!

= 1 + tE[X2] +
∑
k≥2

tkE[X2k]

k!

≤ 1 + tE[X2] + 2
∑
k≥2

tk

k!
· (2σ2)kk! see higher moments previously bounded

= 1 + tE[X2] + 2
∑
k≥2

(2tσ2)k = 1 + tE[X2] + 8t2σ4
∑
k≥0

(
2tσ2

)k
≤ 1 + tE[X2] + 16t2σ4 if t < t0 =

1

4σ2

≤ e−tE[X2]+16t2σ4
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Thus,

E[etZ ] = e−tE[X2]E[etX
2
] ≤ e−

32t2σ4

2 ∀|t| ≤ 1

4σ2

implying Z is
√

32σ2-subgaussian up tp 1
4σ2 .

0.2 Proof of Johnson Lindenstrauss.

Now we have all the tools. LetR be a k×n random matrix where each entryRij is a σ-subgaussian random
variable with variance = 1 ≤ σ2. In particular, we can choose Rij ∼ N(0, 1) which would give σ = 1. Let
A := 1√

k
·R be the scaled version of it, and define Φ(x) = Ax. We show the following

∀x, ||x|| = 1, we have with probability ≥ 1− 1/n3, (1− ε)||x||2 ≤ ||Ax||2 ≤ (1 + ε)||x||2 (*)

By union bound, we ge that with probability > 1 − 1/n, the above holds for x = (vi − vj)/||vi − vj || for
all pairs, which implies the JLT.

Fix an unit vector x. For i = 1, . . . , k, let Yi =
∑n

j=1Rijxj . Observe that E[Y 2
i ] =

∑n
i=1 x

2
iE[R2

ij ] = 1

where we used that the variance of each Rij is exactly 1 and ||x||2 = 1. Note that (Ax)i := 1√
k
Yi, and so

||Ax||22 = 1
k

∑k
i=1 Y

2
i .

We need to show that the following event occurs wp ≥ 1− 2/n3.

E := {(1− 2ε) ≤ 1

k

k∑
i=1

Y 2
i ≤ (1 + 2ε)} or equivalently {

∣∣∣1
k

k∑
i=1

(Y 2
i − 1)

∣∣∣ ≤ 2ε}

By Lemma 2, each Yi is also a σ-subgaussian random variable because ||x||2 = 1. So, by Lemma 3, each
Zi = Y 2

i − E[Y 2
i ] = Y 2

i − 1 is a
√

32σ2-subgaussian rv till t0 = 1
4σ2 . Therefore, by Corollary 0.2,

Z := 1
k

∑k
i=1 Zi is a

√
32σ2/

√
k-subgaussian random variable up to k

4σ2 .

and therefore, by Lemma 1, we get

Pr[|Z| > ε] ≤ 2e−
kε2

64σ4 ∀ε ≤ 32σ4

k
· k

4σ2
= 8σ2

Therefore, if k ≥ 200σ2·logn
ε2

, we get that Pr[|Z| > ε] < 2/n3, proving (*).
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