Packet Routing with Fixed Paths. Input is a directed graph and k source sink pairs s_i, t_i and paths p_i for each pair. We need to **route** packets from s_i to t_i along these paths p_i . Suppose it takes one unit of time to traverse an edge (u, v) and at a time only one edge can use (u, v). Packets can wait at a vertex, however. We want to find a schedule which minimizes *makespan*: the time at which the last packet reaches its destination. Let

$$C \coloneqq \max_{e \in E} |\{i : e \in p_i\}| \quad \text{and} \quad D \coloneqq \max_{i=1}^k |p_i|$$

be the *congestion* and *dilation* of the input. Observe that $OPT \ge \max C, D$, and so, $OPT = \Omega(C + D)$. We now show that there is a schedule with makespan $OPT \le O(C + D\log(kD))$.

We first describe a generic "reduction" from an infeasible schedule to a feasible schedule. Call a schedule α -feasible for some positive integer α , if it sends at most α packets through any edge at any time. So $\alpha = 1$ would imply a feasible schedule.

Lemma 1. Given an α -feasible schedule with makespan T, we can construct a feasible schedule with makespan $\leq \alpha T$.

Proof. An easier proof of αT : Dilation of time. Instead of doing things at t = 1, 2, ... do it in $t = 1, \alpha + 1, 2\alpha + 1, ...$ and whenever there is congestion just use the time-steps in between.

So we can look for α -feasible solutions with as low α and as low makespan.

Algorithm. Each *i* chooses a random 'start' time $r_i \in \{1, 2, ..., \lceil \frac{\beta C}{\log(kD)} \rceil\}$ where $\beta = 3$. Schedule packet *i* from s_i to t_i starting at r_i and not stopping at all in between.

Lemma 2. With probability > $1 - \frac{1}{kD}$, the above schedule is $O(\log(kD))$ -feasible.

Corollary 1. There exists a feasible schedule with makespan $O(C + D\log(kD))$.

Proof. The (in)feasible schedule has makespan $\leq \frac{\beta C}{\log(kD)} + D$. The corollary follows from the previous two lemmas.

Proof. (Proof of Lemma 2) Fix an edge e and a time instant $1 \le t \le D + \frac{\beta C}{\log(kD)}$. Let $\operatorname{cong}(e, t)$ be the number of packets passing through edge e at time instant t. We can write $\operatorname{cong}(e, t)$ as a sum of independent indicator variables. Let X(i, e, t) be the indicator that packet i passes through e at time t. Then

$$\operatorname{cong}(e,t) = \sum_{i=1}^{k} X(i,e,t)$$

What is X(i, e, t)? If $e \notin p_i$, then X(i, e, t) = 0 for all t. Otherwise, let e be the ℓ th edge on p_i . Then X(i, e, t) = 1 iff $r_i + \ell = t$, that is, $r_i = t - \ell$. In particular, if $\ell < t$ pr if $t - \ell > \frac{\beta C}{\log(kD)}$, then X(i, e, t) = 0, otherwise, X(i, e, t) = 1 iff $r_i = t - \ell$. In any case, $\mathbf{E}[X(i, e, t)] \le \frac{\log(kD)}{\beta C}$. And so,

$$\mathbb{E}[\mathsf{cong}(e,t)] \le \log(kD)/\beta$$

By Chernoff, and using $\beta > 3$,

$$\Pr[\mathsf{cong}(e,t) > 3\log(kD)] \le 2^{-3\log(kD)} = \frac{1}{k^3D^3}$$

The number of edges that we need to consider is $\leq kD$. The number of time instants $\leq D + \beta C \leq D + \beta k \leq 3Dk$. So, the probability there exists an edge and time instant t at which more than $3\log(kD)$ packets pass through it is at most 3/(kD).