What I know after taking CS 31

The document summarizes a subset of things which you should be knowing after taking CS 31.

1. Worst Case Running Time.

Computational problem II has instances/inputs I; each input I has solution/output S.

An algorithm A for Il takes I € II and returns its solution S.

Each instance I € II has a notion of size |I|.
Often, this is the number of bits required to describe 1.

The running time of algorithm A on I is denoted as 74 (/).

The worst case running time of A as a function of size is defined to be

T = Ta(l
a(n) jomax all)

2. The Big-Oh Notation.

e Useful notation to tell the “big picture” without worrying about annoying details.
g(n) € O(f(n))if 3 a,b > Osuch that foralln > b, g(n) <a- f(n).

g(n) € Q(f(n))if 3 a,b > 0 such that for alln > b, g(n) > a - g(n).

g(n) € O(f(n) if g(n) € O(f(n)) and g(n) € QA(F(n).

Often the € is replaced by =; so we would say T'(n) = O(n?) to imply T'(n) € O(n?).

3. Divide and Conquer.

e Break a problem into two, recursively solve, combine solutions.
e Often works for speeding up algorithms for which a not-so-bad naive solutions exist.

e Problems seen: MERGE SORT, COUNTING INVERSIONS, MAXIMUM RANGE SUM, POLY-
NOMIAL MULTIPLICATION, CLOSEST PAIR OF POINTS, many others in the Psets.

e Analysis Tool : Master Theorem.
4. Dynamic Programming.

e Smart Recursion / Recursion with Memory.

e Think of optimum solution; see if solution can be built by combining solutions of
smaller subproblems.

e Smaller subproblems should be “succinctly representable”. The value should be de-
fined by a “function” on not too many parameters. Function should have a recurrence
relation.

e 7-step way:

— Definition of the function.
— Base Cases.
— Recurrence.

Proof of Recurrence.
Pseudocode.
Recovery Pseudocode
Runtime and space.

e Problems Seen: SUBSET SUM, KNAPSACK, LONGEST COMMON SUBSEQUENCE, many
others in the Psets.

5. Randomized Algorithms.

e Algorithms which can toss independent coins.
e Monte Carlo Algorithms : can be wrong with some teeny probability
e Las Vegas Algorithms : can have random running times.

e Problems Seen : CHECKING MATRIX MULTIPLICATION (Monte Carlo), QUICK SORT
(Las Vegas)

e Hashing. Universal Hash Functions. Using randomization to have low expected query
times.

e Perfect Hashing. Using randomization to pick collision-free hash functions fast.
e Estimating Frequencies in Data Stream using Hashing : most modern thing seen in
course!

6. Depth First Search.

e Revisiting an old algorithm.
e Lots of power in the first and last’s returned.

e Applications: CONNECTIVITY, CYCLE?, TOPOLOGICAL ORDER of DAGs, STRONGLY
CONNECTED COMPONENTS, 2SAT. All linear time!

¢ You should know how to implement this in any programming language.
7. Breadth First Search.

e Shortest hop-length walks in O(n + m) time.
e Queue implementation of visited vertices.
e Useful for checking BIPARTITE?.

¢ You should know how to implement this in any programming language.
8. Dijkstra.

e Clever generalization of BFS which works when graphs have positive cost edges.

e Doesn’t add everything in queue once distance label updated. Only the “smallest” such
vertex added.

e Runs in O(m + nlogn) time using Fibonacci heaps. Or in O(mlogn) time using usual
heaps.

e Can be used to find shortest length cycles (this was done in problem set).

You should know how to implement this in any programming language.

9. Bellman-Ford.

In graphs with possibly negative cost edges, this algorithm either detects negative cost
cycles, or figures out shortest paths.

Finds shortest cost walks whose lengths are bounded. In case of no negative cost cycles,
shortest walks are shortest paths.

Dynamic program. Runs in O(mn) time.
No one knows how to make it run faster.
All pairs shortest paths can be found in O(n?) time (this was done in a problem set.)

You should know how to implement this in any programming language.

10. Flows and Cuts.

Max Flow : send as much “stuff” as possible from source to sink with no excesses in
any internal node.

Min Cut : minimum capacity edges whose removal disconnects source and sink.
Maximum s, t-flow equals Minimum s, t-cut. Deepest fact uncovered in the course.
Residual Networks! A major idea.

Ford-Fulkerson Algorithm: Keep augmenting flow in the residual network.

Can make it faster* : (a) augment flow on max-capacity path, (b) augment flow on
shortest length path.

Plenty of applications : BIPARITITE MATCHING, LOAD BALANCING, PROJECT SELECE-
TION,. Minimum s, t-cut can find a “cheapest subset” among all subsets fast — very,
very useful tool!

11. Reductions and Hardness*.

Decision Problems: II, each instance has solution YES or NO.

Polytime Algorithm : running time less than some fixed polynomial of size of the in-
stance.

II4 =pory p if there is an efficient algorithm taking YES instances of 114 to YES in-
stances of Il g, and vice-versa.

IT4 =poly Hp : 114 is “easier/no harder” than IIg. If IIp has a polytime algorithm, so
does Il 4; if I1 4 has no polytime algorithm, neither does I .

P: class of all polynomial time solvable problems.
NP: class of all polynomial time verifiable problems.
NP-hard: IT is NP-hard if IT" <1, IT for any II' € NP.
SAT is an NP-hard problem.

