
What I know after taking CS 31

The document summarizes a subset of things which you should be knowing after taking CS 31.

1. Worst Case Running Time.

• Computational problem Π has instances/inputs I ; each input I has solution/output S.

• An algorithm A for Π takes I ∈ Π and returns its solution S.

• Each instance I ∈ Π has a notion of size |I|.
Often, this is the number of bits required to describe I .

• The running time of algorithm A on I is denoted as TA(I).

• The worst case running time of A as a function of size is defined to be

TA(n) := max
I∈Π:|I|≤n

TA(I)

2. The Big-Oh Notation.

• Useful notation to tell the “big picture” without worrying about annoying details.

• g(n) ∈ O(f(n)) if ∃ a, b > 0 such that for all n ≥ b, g(n) ≤ a · f(n).

• g(n) ∈ Ω(f(n)) if ∃ a, b > 0 such that for all n ≥ b, g(n) ≥ a · g(n).

• g(n) ∈ Θ(f(n)) if g(n) ∈ O(f(n)) and g(n) ∈ Ω(f(n)).

• Often the ∈ is replaced by =; so we would say T (n) = O(n2) to imply T (n) ∈ O(n2).

3. Divide and Conquer.

• Break a problem into two, recursively solve, combine solutions.

• Often works for speeding up algorithms for which a not-so-bad naive solutions exist.

• Problems seen: MERGE SORT, COUNTING INVERSIONS, MAXIMUM RANGE SUM, POLY-
NOMIAL MULTIPLICATION, CLOSEST PAIR OF POINTS, many others in the Psets.

• Analysis Tool : Master Theorem.

4. Dynamic Programming.

• Smart Recursion / Recursion with Memory.

• Think of optimum solution; see if solution can be built by combining solutions of
smaller subproblems.

• Smaller subproblems should be “succinctly representable”. The value should be de-
fined by a “function” on not too many parameters. Function should have a recurrence
relation.

• 7-step way:

– Definition of the function.
– Base Cases.
– Recurrence.

1

– Proof of Recurrence.
– Pseudocode.
– Recovery Pseudocode
– Runtime and space.

• Problems Seen: SUBSET SUM, KNAPSACK, LONGEST COMMON SUBSEQUENCE, many
others in the Psets.

5. Randomized Algorithms.

• Algorithms which can toss independent coins.

• Monte Carlo Algorithms : can be wrong with some teeny probability

• Las Vegas Algorithms : can have random running times.

• Problems Seen : CHECKING MATRIX MULTIPLICATION (Monte Carlo), QUICK SORT

(Las Vegas)

• Hashing. Universal Hash Functions. Using randomization to have low expected query
times.

• Perfect Hashing. Using randomization to pick collision-free hash functions fast.

• Estimating Frequencies in Data Stream using Hashing : most modern thing seen in
course!

6. Depth First Search.

• Revisiting an old algorithm.

• Lots of power in the first and last’s returned.

• Applications: CONNECTIVITY, CYCLE?, TOPOLOGICAL ORDER of DAGs, STRONGLY

CONNECTED COMPONENTS, 2SAT. All linear time!

• You should know how to implement this in any programming language.

7. Breadth First Search.

• Shortest hop-length walks in O(n + m) time.

• Queue implementation of visited vertices.

• Useful for checking BIPARTITE?.

• You should know how to implement this in any programming language.

8. Dijkstra.

• Clever generalization of BFS which works when graphs have positive cost edges.

• Doesn’t add everything in queue once distance label updated. Only the “smallest” such
vertex added.

• Runs in O(m + n log n) time using Fibonacci heaps. Or in O(m log n) time using usual
heaps.

• Can be used to find shortest length cycles (this was done in problem set).

2

• You should know how to implement this in any programming language.

9. Bellman-Ford.

• In graphs with possibly negative cost edges, this algorithm either detects negative cost
cycles, or figures out shortest paths.

• Finds shortest cost walks whose lengths are bounded. In case of no negative cost cycles,
shortest walks are shortest paths.

• Dynamic program. Runs in O(mn) time.

• No one knows how to make it run faster.

• All pairs shortest paths can be found in O(n3) time (this was done in a problem set.)

• You should know how to implement this in any programming language.

10. Flows and Cuts.

• Max Flow : send as much “stuff” as possible from source to sink with no excesses in
any internal node.

• Min Cut : minimum capacity edges whose removal disconnects source and sink.

• Maximum s, t-flow equals Minimum s, t-cut. Deepest fact uncovered in the course.

• Residual Networks! A major idea.

• Ford-Fulkerson Algorithm: Keep augmenting flow in the residual network.

• Can make it faster* : (a) augment flow on max-capacity path, (b) augment flow on
shortest length path.

• Plenty of applications : BIPARITITE MATCHING, LOAD BALANCING, PROJECT SELECE-
TION,. Minimum s, t-cut can find a “cheapest subset” among all subsets fast – very,
very useful tool!

11. Reductions and Hardness*.

• Decision Problems: Π, each instance has solution YES or NO.

• Polytime Algorithm : running time less than some fixed polynomial of size of the in-
stance.

• ΠA �poly ΠB if there is an efficient algorithm taking YES instances of ΠA to YES in-
stances of ΠB , and vice-versa.

• ΠA �poly ΠB : ΠA is “easier/no harder” than ΠB . If ΠB has a polytime algorithm, so
does ΠA; if ΠA has no polytime algorithm, neither does ΠB .

• P: class of all polynomial time solvable problems.

• NP: class of all polynomial time verifiable problems.

• NP-hard: Π is NP-hard if Π′ �poly Π for any Π′ ∈ NP.

• SAT is an NP-hard problem.

3

