
CS 31: Algorithms (Spring 2019): Lecture 15
Date: 14th May, 2019

Topic: Graph Algorithms 5: Flows and Cuts in a Graph
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please notify errors on Piazza/by email to deeparnab@dartmouth.edu.

We next move to flows in graphs, the cornerstone of a whole area called combinatorial
optimization and linear programming.

Remark: Before we begin, here is a notation we use throughout this lecture and the remainder.
Suppose we have a real number x : E → R associated with every edge of a graph. And suppose
B ⊆ E is a subset of edges. Then we use the shorthand x(B) to denote the sum

∑
e∈B x(e).

1 Flows in a graph

Formally, a flow in a given graph G = (V,E) is just an assignment of values to edges.
What makes an assignment a flow is certain constraints that (a) capture some physical
reality, and (b) which are extremely useful. The picture to keep in mind when thinking
of flows is actually of “pipes” instead of edges, and the “assignment” is the rate at which
some fluid (water?) is flowing through these pipes. The water could be coming from
somewhere (sources), it could be going somewhere (sinks), there could be accumulation
(excesses), and pipes mayn’t be able to handle more than some rate (capacities). All these
jargon is formalized below.

Definition 1 (Flow Network). A flow network (G, s, t, u) consists of a directed graph G =
(V,E), two specified vertices s, t, and a capacity function u : E → Z≥0 on edges of the
graph. The vertex s is called the source vertex and the vertex t is called the sink vertex.

Definition 2 (Feasible Flow). A feasible/valid/standard flow in a flow network is an as-
signment f : E → R≥0 satisfying the following two constraints:

• (Capacity Constraints) For every edge e ∈ E, 0 ≤ f(e) ≤ u(e).
• (Conservation Constraints) For every vertex v 6= {s, t},

∑
(u,v)∈E f(u, v) =

∑
(v,w)∈E f(v, w).

The first constraint limits the amount of flow any edge by the capacity. The second is
more interesting. To that end, let us make another definition.

Definition 3 (Excess). Given any assignment f : E → R≥0, we define the following excessf
vector for every vertex v ∈ V .

excessf (v) =
∑

(u,v)∈E

f(u, v)−
∑

(v,w)∈E

f(v, w)

1

That is, the excessf (v) is the total “in-flow” into v, that is, the total flow coming into v
minus the total “out-flow” from v, that is, the total flow coming out of v. Taking the water
metaphor again, excessf (v) is the rate at which surplus water accumulates at the vertex v
if the flow is governed by the assignment f .

Going back to the definition of a feasible flow, we see that a flow is a feasible flow if
(a) capacity constraint holds at every edge, and (b) the excess at any non-source-non-sink
vertex is exactly 0.

Now that we have defined flows, two questions arise: (a) why?, and (b) do they always
exist? We postpone the answer to (a), but give a quick answer to (b): Yes, just set f(e) = 0
for all edges. Intuitively, you must feel this is a bogus answer, and indeed in some sense
it is. To make things more interesting, we need to have a notion of value of a flow.

Definition 4 (Value of a flow). The value of a feasible flow is the total excess at the sink,
which from the following lemma, is the negative of the total excess at the source. This
will be denotes as val(f).

Lemma 1 (Sum of Excesses). For any flow f : E → R≥0 (not necessarily a feasible flow),
we have

∑
v∈V excessf (v) = 0.

Proof. Write out the definition for every vertex and add. Follows since every edge (u, v)
has a head and a tail. b

Exercise: Complete this proof.

Remark: Although we have been talking about directed graphs, the above also makes sense for
undirected graphs. However, remember that flows are directed constructs. That is, f(u, v) =
1 doesn’t imply f(v, u) = 1. More precisely, the flow is defined on ordered pairs of E. In an
undirected graph, we could have both f(u, v) and f(v, u) non-zero, but their sum must add
up to less than that edge’s capacity. For simplicity, let’s assume we have a directed graph.

MAX s, t FLOW
Input: A flow network (G, s, t, u).
Output: A feasible flow f : E → R≥0 of maximum value.

1.1 A glimpse into Linear Programming

This subsection was not covered in class.
Before we move forward, let’s put this MAX FLOW problem as a special case of a more
general problem. For this, think of f(e)’s as “variables” and let f be the m-dimensional
vector of these variables. The capacity constraints on the flow f can be written as

0 ≤ Im · f ≤ u (1)

2

where Im is the m×m identity matrix (diagonal 1s, everywhere else 0).
What about the conservation constraints? Consider the n × m matrix B where rows

correspond to vertices and columns corresponds to edges. The column corresponding
to edge (u, v) ∈ G has a +1 in the vth row, a −1 in the uth row, and a 0 in every other
row. Let bv be the row corresponding to the vertex v, and note that 〈bv, f〉 is precisely∑

(u,v)∈E f(u, v) −
∑

(v,w)∈E f(v, w). Thus, the conservation constraints of the flow can be
succinctly written as

B · f =

0 if v 6= {s, t}
−F if v = s

+F if v = t

(2)

where F is the value of the flow.
Therefore, the maximum flow problem is precisely the problem of maximizing the vari-
able F subject to the constraints (1) and (2), where both these constraints are described by
providing upper and lower bounds on some linear functions of the variables f . This is a
special case of a much more general problem called linear programming.

LINEAR PROGRAMMING
Input: M ×N matrix A, an M dimensional constraint vector b, and an N -dimensional
cost vector c.
Output: An N -dimensional vector x which is a solution to

max 〈c, x〉
A · x ≤ b

Size: The number of bits required to describe all the data.

Remark: One of the most remarkable facts ever discovered is that LINEAR PROGRAMMING
can be solved in polynomial time. We will not see any algorithms to solve linear programming.
But I will try, once in a while, to mention how one would solve linear programs in general
using the ideas we use to solve maximum flow.

1.2 Flow Decomposition into Paths and Cycles

This subsection was not covered in class.
Any feasible s, t flow f : E → R≥0 in a flow network can be decomposed into paths and
cycles such that the flow on any edge can be read out by looking at the flows on the paths
and cycles containing this edge.

Theorem 1. Given any feasible s, t flow f : E → R≥0, we can find a collection of s, t paths
P , and a collection of cycles C and an assignment f : P ∪C → R≥0, such that |P|+ |C| ≤ m

3

and for every edge e ∈ E, we have

f(e) =
∑

p∈P:e∈p

f(p) +
∑

C∈C:e∈C

f(C)

Proof. For convenience, we add a dummy edge (t, s) ∈ E and send f(t, s) = val(f) on it.
Note that this new flow has excess(v) = 0 for all v. We now show an algorithm to find the
above decomposition.

Now pick an arbitrary edge e = (u, v) in E with f(e) > 0. Since excess(v) = 0, there
must exist an edge (v, w) such that f(v, w) > 0. Similarly, there must exist and edge (w, x)
with f(w, x) > 0. We keep following these edges till a vertex repeats itself. At that point
we have found a cycle C. Let δ = mine∈C f(e). There are two cases – either (t, s) ∈ C or
not. In the former case, we delete (t, s) from C and add the remaining s, t-path p in P and
set f(p) = δ. In the latter case, we add C to C and set f(C) = δ. We modify the flow f by
setting f(e)← f(e)− δ for all e ∈ C. And then we repeat.

Note that in every step at least one edge e gets 0 flow. We stop when all edges have 0
flow. Since each time |P|+ |C| goes up by one, we see that the final size is ≤ m.

2 Cuts in a graph

Now for something completely different.

Definition 5. Given a flow network (G, s, t, u), a subset F ⊆ E of edges is an s, t-cut if
there is no path from s to t in G \ F . The capacity of the cut F ⊆ E is defined to be
cap(F) :=

∑
e∈F u(e).

An s, t-cut F ⊆ E is minimal if any strict subset F ′ ⊆ F is not an s, t-cut.

Every minimal s, t-cut can equivalently be represented as the boundary edges of a subset
of vertices.

Definition 6. Given a directed graph G = (V,E) and a a subset S ⊆ V vertices, the out-
boundary of S, denoted as ∂+S, is defined to be

∂+S = {(x, y) ∈ E : x ∈ S, y /∈ S}

Remark: There is an analogous definition of

∂−S = {(x, y) ∈ E : x /∈ S, y ∈ S}

which is the t, s cut edges.

The following claim shows the equivalence.

4

Claim 1. The out-boundary of any subset S ⊆ V such that s ∈ S, t /∈ S is an s, t-cut. Any
minimal s, t-cut is the out-boundary of some subset S ⊆ V with s ∈ S, t /∈ S.

Proof. Fix a subset S ⊆ V with s ∈ S, t /∈ S. Let F := ∂+S. Consider the graph H :=
G \ F . Suppose, for contradiction, there is a path from s to t in H . Let this path be
s = x0, x1, . . . , xk = t where each (xi, xi+1) is an edge in H . Since x0 ∈ S and xk /∈ S, there
must exist some i such that xi ∈ S and xi+1 /∈ S. This implies (xi, xi+1) is an edge in ∂+S.
But this implies (xi, xi+1) /∈ H . Contradiction.

For the other direction, suppose F ⊆ E is a minimal s, t-cut. Consider the vertices S
that are reachable from s in G \ F . We claim that F = ∂+S. To see ∂+S ⊆ F , consider
any edge (u, v) ∈ ∂+S. Since u is reachable from s in G \ F , if the edge (u, v) /∈ F , that is,
(u, v) ∈ G \ F , then v would be reachable from s in G \ F as well. This contradicts that
v /∈ S. To see F ⊆ ∂+S, we use the first part to say that (a) ∂+S is an s, t-cut, and then
since it is a subset of F and F is minimal, we must have F = ∂+S.

Remark: Henceforth, when we talk about s, t-cuts, we may just think of them as out-
boundaries of some subset S which contains s but doesn’t contain t.

MIN s, t CUT
Input: A flow network (G, s, t, u).
Output: An s, t-cut of minimum capacity.

The following lemma shows the (weak) relationship between flows and cuts. It states
that the value of any s, t flow must be at most the value of any s, t cut.

Lemma 2. Let f be any feasible s, t flow and ∂+S be any s, t cut. Then

val(f) := excessf (t) ≤ u(∂+S) =: cap(S)

Proof. Since we know that excessf (t) = −excessf (s), the lemma is equivalently asking us
to show that

u(∂+S) + excessf (s) ≥ 0

To get this, let’s add the excesses for every v ∈ S. Why? At some level this is because we
wish to argue about the relation between excessf (s) and u(∂+S), and the edges participat-
ing in the latter may be “far away” from the vertex s. Rather, they involve vertices on the
“boundary” of the set S and somehow we need to “propagate” their information to the
vertex s which may be deep inside the set. The truer, less enlightening answer is that it
works.

In any case, we get

∑
v∈S

excessf (v) =
∑
v∈S

 ∑
(u,v)∈E

f(u, v)−
∑

(v,w)∈E

f(v, w)

 =
∑

(x,y)∈E

(f(x, y) · 1y∈S − f(x, y) · 1x∈S)

5

where 1x∈S is the indicator variable for x ∈ S and takes value 1 if x ∈ S and 0 if x /∈ S.
Now note that since f is feasible, the LHS is precisely excessf (s). On the other hand,

the RHS is precisely f(∂−S) − f(∂+S), that is, the total flow on the ∂−S edges minus the
total flow on the ∂+S edges. Together, we get,

excessf (s) = f(∂−S)− f(∂+S)

Now we use the observations

Observation 1. (a) Since f(e) ≥ 0, we get f(∂−S) ≥ 0, and (b) since f(e) ≤ u(e), we get
f(∂+S) ≤ u(∂+S).

Taking this together, we get what we need to prove the lemma

excessf (s) ≥ −u(∂+S) ⇒ u(∂+S) + excessf (s) ≥ 0

The obvious corollary to the above fact is that the maximum feasible s, t flow in any
graph is at most the minimum s, t cut.

Theorem 2 (Weak Duality). In any graph network (G, s, t, u), the maximum s, t flow is at
most the minimum s, t cut value.

Corollary 1 (Corollary to Lemma 2). If we every find a feasible s, t flow f and an s, t cut
S such that

1. f(e) = u(e) for all e ∈ ∂+S
2. f(e) = 0 for all e ∈ ∂−S

Then f is a maximum s, t flow and S is a minimum s, t cut.

Proof. The assumptions above imply that the inequalities in Observation 1 are indeed
equalities. That would imply excessf (s) + u(∂+S) = 0 implying val(f) = val(S).

3 The Residual Network

We now embark upon an algorithm for finding maximum flows. One of the key concepts
is that of the residual network. Before we define this, let us first look at a natural algorithm
that doesn’t quite work.

Recall what we need to do: we need to find a valid flow f : E → R≥0 such that
excessf (t) is maximized. We start with the zero flow: f(e) = 0 for all e ∈ E. As noted
before, this is a valid flow. Now consider an s, t-path p in the graph G. Given such a path,
we can augment the current flow f along the path p as follows:

• Let δ = mine∈p u(e)

6

• For every e ∈ p, set f(e)← f(e) + δ.

Note that flow conservation remains valid; the total in-flow at any v 6= s, t is equal to the
total out-flow – it is either δ or 0. Also note that by choice of δ and since we started from
the 0-flow, the capacity constraint also remains valid. Finally, the excessf (t) increases by
δ. Progress!

How should we proceed? We could repeat the steps above, namely, find an s, t-path
p and then augment flow along path p. However, we have already sent some flow which
could have used up some capacity of certain edges e. In the augmentation step we should
be wary of this lest we violate the capacity constraint. The fix is to maintain a residual
capacity uf (e) for every edge e. These are initially set to u(e), the original capacity, but for
every unit of flow that we pass through this edge, we must decrease its residual capacity.
This leads to the following augmentation procedure along path p given we have sent flow
f :

• Let δ = mine∈p uf (e)
• For every e ∈ p, set f(e)← f(e) + δ.
• For every e ∈ p, set uf (e)← uf (e)− δ.

The above process can be repeated over and over again, and every time the value of the
flow increases by δ. We stop when δ = 0, that is, we can’t find any path p from s to t with
mine∈p uf (e) > 0. How would we check this? Simple; remove all edges with uf (e) = 0 and
check if there is a path from s to t. We write the full algorithm below.

1: procedure NAIVEMAXFLOW(G, s, t, u):
2: Start with f ≡ 0 and uf (e) = u(e) for all e.
3: . Invariant: uf (e) + f(e) = u(e) for all e.
4: while true do:
5: Find any path p from s to t with mine∈p uf (e) =: δ > 0.
6: If no such path break
7: For every edge e ∈ p: f(e)← f(e) + δ; uf (e)← uf (e)− δ.
8: return f

As can be guessed by the name and the color of the shading, the algorithm above,
although a solid try, doesn’t return the correct solution. Let’s see an example where it
fails (maybe you’d like to try one first?): see Figure 1

Note that flow of value 2 can be “decomposed” into two flows: one which send flow
of one unit along path s, a, q, t and the other which sends one unit of flow along the path
s, p, b, t. In a sense, the flow we chose to send, that is the one on the path (s, a, b, t) was
a mistake, and as of now we have not kept any safeguards against mistakes. The correct
algorithm for maximum flow does precisely that. And this, finally, brings us to the notion
of the residual network.

7

s

a b

t

p q

1

1

1

1
1

1

1

Figure 1: In this graph G, if we send our first augmentation along the path (s, a, b, t), then
we would send 1 unit of flow on this. All these edges would have uf (e) = 0 and deleting
these edges disconnects s and t. Thus the NAIVEMF algorithm would terminate. On the
other hand, there is a flow of value 2 which sets f(e) = 1 for all edges except (a, b).

Definition 7. Given a flow network (G, s, t, u) and a valid flow f : E → R≥0, the residual
network with respect to flow f denoted as Gf is defined as follows:

• Gf = (V,Ef) where Ef = E ∪ Erev

• Erev = {(v, u) : f(u, v) > 0}, that is, Erev contains the reverse of all edges which carry
positive flow.
• The residual capacity on edges in Ef is defined as follows

uf (x, y) =

{
u(x, y)− f(x, y) if (x, y) ∈ E
f(y, x) if (x, y) ∈ Erev

Let us draw the reverse graph for the network in Figure 1 with respect to the flow of
unit 1 sent along the path s, a, b, t. This is shown in Figure 2.

Why is the residual network important? Well, note that after the flow f is sent on the
path (s, a, b, t), the residual network Gf does have a path from s to t where every edge
has a residual capacity uf (e) > 0; this path is q = (s, p, b, a, q, t). As you can see, this path
contains one edge (b, a) which is not in E but in Erev.

8

s

a b

t

p q

1

1

1

1 11

1
1

1

1

s

a b

t

p q
1 11

10

0

0

1

1

1

Figure 2: The graph in the left shows the flow in green. The graph in the right is the
residual graph. The red edges are Erev. The numbers are the residual capacities.

The question that should come into your mind now is: so what? The edge (b, a) doesn’t
even exist in the graph G; why are we bothering with such abstract constructs? Well,
suppose you suppressed those thoughts and tried to augment flow along this path q. Wait!
Firstlu, there is no edge (b, a) and now you are asking me to send flow across it?

But here’s the point: we know that since (b, a) ∈ Erev there must exist (a, b) ∈ E with
f(a, b) > 0. Indeed, f(a, b) = uf (b, a). So increasing flow along the dummy reverse edge
(b, a) ∈ Erev is actually just a short-hand for decreasing the flow along the edge (a, b). This
augmentation is indicating that our first choice of sending flow across the edge (a, b) was
perhaps a “mistake”, and this is fixing it. Indeed, this is the conceptual abstraction of the
residual network: send flow along edges, but keep the reverse edges as stop guards to
rectify potential mistakes. Now we are ready to formally give the algorithm.

9

	Flows in a graph
	A glimpse into Linear Programming
	Flow Decomposition into Paths and Cycles

	Cuts in a graph
	The Residual Network
	The Ford Fulkerson Algorithm
	The issue with FordFulkerson and real capacities

