
CS 31: Algorithms (Spring 2019): Lecture 16
Date: 16th May, 2019

Topic: Graph Algorithms 6: The Ford-Fulkerson Algorithm
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please notify errors on Piazza/by email to deeparnab@dartmouth.edu.

1 The Ford Fulkerson Algorithm

First, we define augmentation along a path in a residual network given the previous lec-
ture’s intuition.

1: procedure AUGMENT(Gf , s, t, p):
2: . Augment along path p in the residual network Gf .
3: . Modifies f(e) for every e ∈ G; modifies uf (e) for every edge e ∈ Ef .
4: δ := mine∈p uf (e).
5: For every edge e = (x, y) ∈ p:

• If (x, y) ∈ E:
– f(x, y)← f(x, y) + δ;
– uf (x, y)← uf (x, y)− δ;
– uf (y, x)← uf (y, x) + δ;

• If (x, y) ∈ Erev:
– f(y, x)← f(y, x)− δ; . Note: (y, x) ∈ E

– uf (y, x)← uf (y, x) + δ;
– uf (x, y)← uf (x, y)− δ;

The following invariants should be checked from the pseudocode above.

Claim 1 (Invariants of Augmentation).

I1. For every edge e ∈ E ∪ Erev, uf (e) ≥ 0
I2. For every edge (x, y) ∈ E, f(x, y) + uf (x, y) = u(x, y)
I3. For every (x, y) ∈ Erev, f(y, x) = uf (x, y).

b
Exercise: Formally prove the above claim.

Claim 2. If f satisfied the capacity constraints before AUGMENT, then it does so after
AUGMENT too.

Proof. This follows from the Invariants: For any edge (x, y) ∈ E, we have f(x, y) =
u(x, y)− uf (x, y) ≤ u(x, y) (from I2 and I1, respectively). Similarly, I1 implies uf (y, x) ≥ 0
which in turn implies f(x, y) ≥ 0.

1



Claim 3. If f is an s, t flow inGwhich satisfies flow conservation constraints at every ver-
tex v 6= s, t, then the flow after AUGMENT step also satisfies flow conservation constraints
at every vertex v 6= s, t.

Proof. If v /∈ p, then there is nothing to discuss. So assume v ∈ p. Since v /∈ {s, t} it is an
internal node in p and let (w, v) and (v, x) be the two edges of p incident on it. There are
four cases to consider.

• Case 1: (w, v) ∈ E, (v, x) ∈ E. In this case, both f(w, v) and f(v, x) go up by δ,
implying the increase in excess is 0.
• Case 2: (w, v) ∈ E, (v, x) ∈ Erev. In this case, f(w, v) goes up by δ and f(x, v) goes

down by δ, implying the increase in excess is 0.
• Case 3: (w, v) ∈ Erev, (v, x) ∈ E. In this case, f(v, w) goes down by δ and f(v, x) goes

up by δ, implying the increase in excess is 0.
• Case 4: (w, v) ∈ Erev, (v, x) ∈ Erev. In this case, both f(v, w) and f(x, v) go down by
δ, implying the increase in excess is 0.

Claim 4. After AUGMENT, the excessf (t) goes up by δ.

Proof. Let (v, t) ∈ p be the edge incident on t. If (v, t) ∈ E, then f(v, t) increases by
δ and the flow on no other edge incident on t changes, implying excessf (t) goes by δ.
If (v, t) ∈ Erev, then f(t, v) decreases by δ and the flow on no other edge incident on t
changes, implying excessf (t) goes by δ.

Now we are ready to describe the maximum flow algorithm. We call it the FORDFULK-
ERSON algorithm after the discoverers Lester Ford and Ray Fulkerson.

1: procedure FORDFULKERSON(G, s, t, u):
2: Initialize f ≡ 0 and uf ≡ u and Gf ≡ G.
3: while true do:
4: Check if there is an s, t path p in Gf with all uf (e) = 0 edges removed.
5: If not, break.
6: Else, AUGMENT(Gf , s, t, p).
7: return (f,Gf ).

Lemma 1. If u(e)s are integer valued, then FORDFULKERSON returns an integer valued
valid f in O(nmU) time, where U := maxe∈E u(e).

Proof. Since the 0-flow is valid, and the Augmentation Claims imply AUGMENT maintains
validity, we get that the final flow is valid.

We claim that the Line 4 in AUGMENT will set δ to a positive integer valued. To see
this, we need to prove uf is integer valued. But this is true in the beginning (when uf ≡ u),

2



and since subsequently f is augmented in δ-installments, the f is always integral which
in turn leads to uf being integral.

Furthermore, each time excessf (t) grows by δ ≥ 1. Since the final flow is valid, the total
value of this flow excessf (t) ≤ nU since there can be at most n edges of the form (v, t) and
each has capacity at most U . Thus, the algorithm terminates in O(nU) rounds. Finally,
note each round takes O(n+m) time. Why?

b

Exercise: Show an example of a network with U := maxe∈E u(e) where FORDFULKERSON
takes Ω(U) iterations. In your example you may feed the algorithm any path p from s to t in
Gf with mine∈p u(e) > 0.

Now comes the main crux.

Lemma 2. The flow f returned by FORDFULKERSON when it terminates is a maximum
valued flow.

Proof. We prove the lemma by invoking Corollary from previous lecture. We describe a
cut induced by a subset S which satisfied the properties of the corollary. In fact

S = {v : v is reachable from s in Gf with all uf (e) = 0 edges removed.}

Clearly, s ∈ S. Since the algorithm terminates, t /∈ S.
Now fix an (x, y) ∈ ∂+(S). Since y is not reachable from s using positive residual

capacity edges, we get uf (x, y) = 0. By I2, this implies

For (x, y) ∈ ∂+(S), f(x, y) = u(x, y)

Now consider an (x, y) ∈ ∂−(S). Since x is not reachable from s using positive residual
capacity edges, we get uf (y, x) = 0 for (y, x) ∈ Erev. That is,

For (x, y) ∈ ∂−(S), f(x, y) = 0

But these are precisely the conditions of the corollary. Thus, f is a maximum s, t flow and
S is a minimum s, t cut.

Putting everything together,

Theorem 1. Given a flow network (G, s, t, u) where u(e) is a positive integer for every
edge e ∈ E(G), the FORDFULKERSON algorithm finds a maximum s, t flow which is inte-
gral, and a minimum s, t cut in O(nmU) time.

The following important theorem follows as a corollary.

Theorem 2 (The Max-Flow-Min-Cut Theorem.). The maximum s, t flow in any network
equals the minimum s, t cut.

3



1.1 The issue with FORDFULKERSON and real capacities

This subsection was not covered in class.
Lemma 2 says that the flow returned by FORDFULKERSON when it terminates is a maxi-
mum flow. Lemma 1 proves that the algorithm terminates when u(e)’s are integer valued.
The exercise right after the Lemma asks you to find an example Interestingly, the algo-
rithm may not even terminate if the u(e)’s are irrational numbers! As the example below
shows, in each iteration the value of mine∈p u(e) keeps decreasing geometrically leading
to a situation which never ends. More frustratingly, the maximum flow value it converges
to is also far from the maximum flow. The example is the following network in Figure 1.1.
The value φ :=

√
5−1
2

is (one of) the irrational numbers satisfying φ2 + φ− 1 = 0.

s

x

v w

u

t

10

10 10

10

10 10

𝜙

1

1

Before we describe the “bad paths” for FORDFULKERSON let’s just note that the max-
imum flow value for the above network is 21. We can see this as follows: send 10 units
of flow on the path (s, x, t); send 10 units of flow on the path (s, u, t), and then send 1
unit of flow along the path (s, v, w, t). To see this is the maximum flow, consider the cut
S = {s, v, u}; note that ∂+S := {(s, x), (v, w), (u, t)} of capacity 21. So, if we had indeed
chosen the above three paths to augment on, FORDFULKERSON would’ve terminated to
the correct answer in 3 rounds. Instead consider what happens next. We use F to main-
tain the value of the flow.

In Iteration 1, we provide the path (s, v, w, t) to the algorithm. We get δ1 := 1 and
F = 1. After sending this flow, the residual network is this.

4



s

x

v w

u

t

10

10 10

10

9 9

𝜙

1

0

1 1 1

In Iteration 2, we provide the path (s, x, w, v, u, t). How much flow can we send on
this path? Since φ < 1, we see that δ2 := φ. This makes the current value F = 1 + φ. After
sending this flow, the residual network is this (actually, draw it yourself and then check).

s

x

v w

u

t

10

10 - 𝜙
10

9 9

0

1-𝜙

𝜙

1 1-𝜙 1

𝜙 𝜙

𝜙

𝜙

In Iteration 3, we provide the path (s, v, w, x, t). Note that δ3 = φ again, and the current
flow becomes F = 1 + 2φ. After sending this, the residual network is (you are drawing
first, right, and then checking?)

5



s

x

v w

u

t

10

10 - 𝜙

9-𝜙 9

𝜙

𝜙2

0 

1 1

𝜙 0

𝜙

𝜙

1+𝜙

10 - 𝜙
𝜙

Now, in Iteration 4, we provide the path (s, x, w, v, u, t) again. The minimum uf (e)
edge is (v, u) with residual capacity δ4 := 1− φ = φ2. The value of F = 1 + 2φ+ φ2. After
augmenting φ2 flow on this path, we get the following residual network.

s

x

v w

u

t

10

10 - 𝜙 - 𝜙2

9-𝜙 9

𝜙3

0 

𝜙2

1-𝜙2 1

𝜙+𝜙2 𝜙2

1
1+𝜙

10 - 𝜙
𝜙

𝜙+𝜙2

Note that the residual capacity of (x,w) is φ− φ2 = φ(1− φ) = φ3.
In Iteration 5, we provide the path path (s, u, v, w, t). Note on this path δ5 = φ2. After

sending this flow the value becomes F = 1 + 2φ+ 2φ2, and the residual network becomes

6



s

x

v w

u

t

10 - 𝜙 - 𝜙2

9-𝜙 9-𝜙2

𝜙3

𝜙2

0

1
1+𝜙2

𝜙+𝜙2
𝜙-𝜙3

1-𝜙2

1+𝜙

10 - 𝜙
𝜙

𝜙+𝜙2𝜙2

Next, we repeat the paths sent in the previous 5 iterations again in this order. That
is, we send φ3 flow on (s, x, w, v, u, t). This makes the residual capacity of (v, u) equal to
φ2 − φ3 = φ4. Follow up with a flow of φ3 on (s, v, w, x, t) making the residual capacity
of (x,w) equal to φ3. The total flow is now F = 1 + 2φ + 2φ2 + 2φ3. Next send φ4 flow
on (s, x, w, v, u, t) following with a flow of φ4 on (s, u, v, w, t). This will make the residual
capacity of (x,w) equal to φ5 and the residual capacity of (v, u) equal to φ4, and the total
flow F = −1 + 2(1 + φ+ φ2 + φ3 + φ4). And so and so forth – you get the drift.

Note that the value of F converges to (but never achieves) the value F = −1+2/(1−φ)
which is nowhere close to the maximum flow value of 21.

7


	The Ford Fulkerson Algorithm
	The issue with FordFulkerson and real capacities


