
CS 31: Algorithms (Spring 2019): Lecture 19
Date: 28th May, 2019

Topic: P, NP, and all that Jazz.
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please notify errors on Piazza/by email to deeparnab@dartmouth.edu.

The main goal of this lecture is to introduce the notions of NP and NP-hardness
and NP-completeness, and to understand what the P vs NP question is. Our treatment
would be semi-formal; for a formal and much more in-depth treatment I suggest taking
CS 39. We start with decision problems.

1 Decision Problems

Definition 1. Informally, any problem Π is a decision problem if its solutions are either
YES or NO. Formally, a problem Π is a decision problem if all instances I ∈ Π can be
partitioned into two classes YES-Instances and NO-instances, and given an instance I, the
objective is to figure out which class it lies in.

Example 1. We have seen many examples of decision problems in this course.

1. (Subset Sum) Given a1, . . . , an;B decided whether or not there exists a subset of
these numbers which sum to exactly B?

2. (Reachability) Given a graph G = (V,E) and two vertices s, t, is there a path from s
to t in G?

3. (Strongly Connected) Given a directed graph G = (V,E), is it strongly connected?

Not all problems are decision problems. There are optimization problems which ask us
to maximize or minimize things. For example, find the largest independent set in a graph;
given an array, find the maximum range sub-array; given a knapsack instance, find the
largest profit subset that fits in the knapsack. Most optimization problems, however, have
decision versions. Let’s give some examples.

Example 2. 1. Given a graph and a number K, is there an independent set in G of size
≥ K?

2. Given an array A[1 : n] and a number K, are there i < j such that A[j]− A[i] ≥ K?
3. Given a knapsack instance and a number K, is there a subset of items which fit in

the knapsack and give profit ≥ K?

You get the picture.
Now that we have defined decision problems, let’s move to polynomial time reductions.

1

2 Polynomial Time Reductions

Definition 2. A decision problem ΠA polynomial time reduces to a decision problem ΠB

if there exists an algorithm A such that

• A takes input an instance I of ΠA.

• A outputs an instance J of ΠB.

• There exists a polynomial p(·) such that the running time of A on I ∈ ΠA is at most
p(|I|) where |I| is the size of the instance. This necessarily implies |J | ≤ p(|I|).

• I is a YES-instance of ΠA if and only if J is a YES-instance of ΠB.

In that case, we say ΠA �poly ΠB, or simply, ΠA � ΠB.

Indeed, we have already seen, and you have written about, reductions. In each appli-
cation of the maximum flow, we reduced the application to maximum flow. For example,
to check if a bipartite graph has a matching of size k, we saw an algorithm which takes an
instance of bipartite matching (a bipartite graph G) and constructs a network (NG) with
the property that if the graph has a matching of size k, then the max-flow in NG is k, and
also vice-versa, namely, if NG has a max-flow of k, then G has a matching of size k.

Why are reductions useful? Because they allow us to state in a formal sense when a
problem ΠA is “easier” than ΠB. Suppose we had a polynomial time algorithm B to solve
problem ΠB, and if ΠA � ΠB, then we can also solve ΠA in polynomial time. To see this,
note that given any instance I of ΠA, we can get J = A(I) in polynomial time, and then
use the algorithm B to decide whethet J is a YES instance or not. Whatever it is, we can
give the same answer for I. Let’s encapsulate this in a lemma.

Lemma 1. If ΠA � ΠB, and there exists a polynomial time algorithm to solve ΠB, then
there is a polynomial time algorithm to solve ΠA.

The other nice thing is transitivity.

Lemma 2. If ΠA � ΠB and ΠB � ΠC , then ΠA � ΠC .
b

Exercise: Prove this.

So where are we getting at? Suppose we are stuck at solving a problem ΠB. We try and
try but never get an efficient algorithm. What should we do? Suppose there was some
other famous problem ΠA which many more people have looked at, many more people
have tried, and many more people have failed at getting polynomial time algorithms.
And suppose you can now prove ΠA � ΠB. Well, that will give very good indication
that ΠB is a hard nut to crack; by Lemma 1 solving ΠB will amount to solving ΠA in
polynomial time as well. Next, we describe this famous “hard” ΠA.

2

3 A “Hard” Problem

The problem is a cousin of a problem you already met in the problem sets. Recall what
Boolean formulas are. There are Boolean variables and their negations, together called
literals. Examples are x1, x2, and so on. Then there are clauses where each clause is a
collection of literals orred with each other. Examples being x1 ∨ x2, x2 ∨ x3 ∨ x4, and so
on. A SAT formula is a collection of various clauses. A formula is satisfiable if there exists
a setting of {true, false} to the variables such that in every clause at least one of the literals
evaluates to true. For example, the formula could be

φ = (x1 ∨ x2) ∧ (x2 ∨ x1)

in which case it is satisfiable by setting both x1 and x2 to true. On the other hand, the
formula

φ′ = (x1 ∨ x2) ∧ (x2 ∨ x1) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2)

is unsatisfiable. You can check this by going over all the 4 possibilities of setting {true,false}
to the x1, x2 variables.

SAT
Input: A SAT formula with n variables and m clauses.
Output: Decide whether or not it is satisfiable.

SAT is a decision problem. We don’t know of any polynomial time algorithm for this
problem.

Conjecture 1. There is no polynomial time algorithm for SAT.

Remark: At this point, you may be inclined to say, “Sure! This problem is so unstructured,
what can you do but check all assignments? And there are 2n many of them.” Well, don’t!
First, there are many heuristics which do better than pure guessing and do well in practice.
Unfortunately, none of them provably give fast algorithms all the time. Second, the argument
above can be made for many problems. And if something we have learned in this course is that
the study of algorithms is riddled with surprises (and we are surprised by many riddles).

The above is a conjecture. We are very far from either proving or disproving this
conjecture. On the one hand, the best algorithm for SAT runs in time “essentially” 2n

(formally, it runs in 2n−o(n) time where recall o(n) is the set of functions whose ratio with
n tend to 0 as n tends to infinity). On the other hand, O(n) algorithms for SAT are not
ruled out. On a different track, as mentioned above, there are many fast heuristics for
SAT which solve the SAT formulas arising in practice very well. All in all, SAT is a very
interesting beast which hasn’t been tamed.

Here is another simpler sounding version of SAT.

3

3SAT
Input: A SAT formula with n variables, m clauses, and at most 3 literals per clause
Output: Decide whether or not it is satisfiable.

The next lemma shows that 3SAT is no simpler – in fact SAT can be reduced to 3SAT.

Lemma 3. SAT � 3SAT

Proof. Let’s recall what we need to do. We need to find an algorithm which takes an
instance of SAT, that is a formula, and returns an instance of 3SAT such that the SAT
formula is satisfiable if and only if the 3SAT formula is.

Let φ be the SAT formula. Of course if all clauses had at most 3 literals, there was
nothing to do. So let us consider a clause C with more than 3 variables. Say, C = (x1 ∨
x2∨x3∨x4) with 4 literals. Our reduction algorithm introduces a new variable yC and breaks
C into 2 clauses as follows:

(x1 ∨ x2 ∨ yC) ∧ (yC ∨ x3 ∨ x4)

We claim that C is satisfiable if and only if the above two clauses are. If C is satisfiable,
then one of its literal is set to true. This literal appears in one of the two clauses above,
say the first one. Then we set yC to true making the second clause satisfied as well. On
the other hand, if the above two clauses are satisfiable, then exactly yC or yC is set to true.
If the former, then one of the literals in the second clause which belongs to C must be set
to true. Which means C is also true.

Therefore, we can replace C by the above two clauses, which as you can see has 3
literals each. More generally, if C has ` literals we could replace it with two clauses one
of which has 3 literals and the other has ` − 1 literals. We can then continue chipping on
the (`− 1) length clause. Each time we would introduce a new variable and a new clause.
Therefore, a clause C of length ` can be transformed to an equivalent 3SAT formula with
` − 3 extra variables and clauses such that the original clause is satisfiable if and only if
the 3SAT formula is.

We can repeat the above for every clause. The resulting 3SAT formula will have at
most O(nm) variables and O(nm) clauses and has the property that it is satisfiable if and
only if the original SAT formula is. Also note that the above reduction time is at most a
polynomial of (n+m), in fact, the total time is O((n+m)2). This completes the proof.

Remark: You should observe that the number 3 can’t be brought down to 2 using the above
trick. If we try to break a clause of size 3 into two clauses with an extra variable, we end up
with clauses of size 3. In fact this shouldn’t be a surprise; you have seen a linear time algorithm
to solve 2SAT.

b

4

Exercise: Show a reduction from 3SAT to EXACT3SAT where every clause of the satisfiabil-
ity formula has exactly 3 literals.

Ok, so the general satisfiability formula can be reduced to another version with some
extra structure. Why is it useful for anyone who say works on graph algorithms or some-
thing else, and doesn’t care much about satisfiability? The next lemma shows how reduc-
tions can straddle domains. A little later we will see that SAT is the mother of “most”
computation problems.

Consider the following problem. Call a subset I ⊆ V of vertices in a graph independent
if for every pair of vertices u and v in I , (u, v) is not and edge.

IS
Input: An undirected graph G = (V,E) and a parameter K.
Output: Decide whether or not there exists an independent set I in G with |I| ≥ K?

Lemma 4. 3SAT � IS

Proof. Again, let’s recall what we need to do. We need to come up with an algorithm
which takes a 3SAT formula and returns a graph G and a parameter K such that (a) if the
formula is satisfiable then G has an independent set of size ≥ K, and (b) if the formula
is not satisfiable, then G can’t have an independent set of size ≥ K. It is often easier to
show the contrapositive of (b), that is, (b’) if G has an independent set of size ≥ K, then
the formula is satisfiable.

For simplicity, and also because of the exercise above, we work with EXACT3SAT
where each clause has exactly 3 literals. The reduction is as follows. The graph has 2n+3m
vertices. These are divided into two classes: Vvar and Vcl. For each variable xi of the
formula φ, we add vertex xi and xi in Vvar. We add an edge between them. For each clause
C = (α ∨ β ∨ γ), we add three vertices (α, β, γ) to Vcl. We add all three edges between
them.

Now note that for the same literal, say x1 there is exactly one appearance in Vvar, but
there can be many appearances in Vcl. In fact it appears as many times this literal appears
in the formula. Next comes the crucial connector edges. For every literal α, we add an
edge between the unique version in Vvar to every appearance of the literal α in Vcl.

We give an example in Figure 1. Perhaps you should try out one for yourself too.
To complete the reduction we also need to specify the parameter K. We set K = n+m.

Now that the reduction is defined, we need to prove that it does what it is supposed
to do.

• Suppose φ is satisfiable. We now construct an independent set I of size n + m. For
every α that is set to true, we pick the vertex corresponding to the complement α
from Vvar in I . At this point note I is independent and is of size n. For every clause
C = (β ∨ γ ∨ δ) we know at least one of the literals must be set to true. We arbitrarily
choose one of them, say β, and pick the corresponding vertex in Vcl for this clause

5

Say 𝜙 :
Variables: x1 , x2, x3, x4

Clauses: (x1 ∨ x2 ∨ ¬x3) ∧ (¬x2 ∨ x3 ∨ ¬ x4) ∧ (¬x1 ∨ x3 ∨ x4)

x1 ¬x1 x2 ¬x2 ¬x3 x4 ¬x4

x1

x2

¬x3
¬x2

x3

¬x4
¬x1

x3

x3

x4

Figure 1: Example for the reduction 3SAT � IS

into I . Since β is set to true, we don’t pick the vertex corresponding to β in Vvar. And
thus I remains independent. Since across clauses vertices from Vcl don’t have edges,
we see that I remains independent after we pick one vertex from Vcl for each clause.
Thus we get I of size (n+m).

• Now we need to prove that if there is an independent set I of size ≥ n+m, then the
formula is satisfiable. Firstly observe that G contains n disjoint edges and m disjoint
triangles. Any independent set can select at most one vertex from each such edge
and each such triangle. Thus, if |I| ≥ n + m, then in fact |I| = n + m and must pick
one vertex from each edge and one vertex from each triangle.

Suppose we pick vertex α ∈ Vvar from the edge (α, α). Then set α to false. This
defines an assignment to all variables. We claim this satisfies the formula. Pick a
clause (α ∨ β ∨ γ). We know that among the corresponding vertices in Vcl we pick
exactly one, say γ. But this means that among the two vertices (γ, γ) in Vvar we must
have γ in the independent set. That is, we must have set γ to true thus satisfying the
clause. Done.

You should “run” this proof on the example in Figure 1 to make sure you see what’s going
on.

Let’s see what conclusions we can make at this point. Lemma 2 applied to Lemma 3
and Lemma 4 implies that SAT � IS. Thus if you believe that the completely unstructured
problem SAT is “hard”, that is if you believe Conjecture 1, then you get the conclusion
“there are no polynomial time algorithms for IS” using Lemma 1.

6

4 P vs NP

We finally come to the main goal of this lecture: after this whenever you use the jargon
“NP-hard” or “NP-complete”, you will know what you mean by it, and never say things
like

“You know, the problem’s like NP-hard so yeah not polynomial time.”

Before I begin, I confess we have done a bit of disservice to the concepts I am going
to tell about by choosing horrible names like P and NP. But it is what it is and we are
stuck with it for better or worse. Once again, let me remind you, what I am saying below
is informal. It is not incorrect, but please take CS39 to get a better appreciation of all this.

Recall decision problems. P and NP are just classes (subsets) of decision problems.
The definition of P is straightforward.

Definition 3. P is the class of decision problems which can be solved in polynomial time.
More precisely, Π ∈ P if there exists an algorithm A and a polynomial p(), such that

• For every YES-instance I ∈ Π, A(I) runs in time p(|I|) and returns YES.
• For every NO-instance I ∈ Π, A(I) runs in time p(|I|) and returns NO.

The definition of NP is more interesting. NP is the class of decision problems which
can be verified in polynomial time. What? Let us elaborate in the definition below.

Definition 4. A problem Π lies in NP if there exists an algorithmA and a polynomial p(·),
such that

• For every YES-instance I ∈ Π, there exists a “solution” S with |S| ≤ p(|I|) such that
A(I,S) runs in ≤ p(|I|+ |S|) time and returns YES.
• For every NO-instance I ∈ Π, and for every purported “solution” S of size |S| ≤
p(|I|), A(I,S) runs in ≤ p(|I|+ |S|) time and returns NO.

The above definition is deep, so let’s first look at an example and then we see other
ways of interpreting it.

Claim 1. SAT lies in the class NP.

Proof. We need to come up with an algorithm A which reads an instance of SAT, that
is a formula φ, and a “solution” S and says YES or NO. Here is one observation: we
can assume that the solution S be any given “format”; our algorithm A will say NO
immediately if the format is not satisfied.

So here is what our “verifier” A expects: I should be a formula φ, and the solution
S should be an assignment of truth values to the variables of φ. Anything else, A will
reject outright (that is, says NO). Furthermore, if the format is correct, the algorithm just
verifies if the truth value expressed in S satisfies the formula φ. If so, it says YES.

7

Now we see that the conditions of the definition are trivially true. If φ is indeed satis-
fiable, then S be the assignment which satisfies φ. We can’t stress enough: the algorithm
A doesn’t need to find S; it just needs to verify it. A much easier proposition. In any case,
if φ is satisfiable then the S described would make the algorithm A accept. All this takes
linear time (so the polynomial is just a linear function).

On the other hand if the formula is not satisfiable, then if no assignment makes all
clauses true. So if S is not rejected outright, it will be rejected once all the clauses are
verified by A. That is, if I is a NO-instance, no matter what S you feed A the algorithm
will say NO.

Is your mind spinning yet? b
Exercise: Prove that IS lies in the class NP.

Here is another interpretation of NP. Imagine Luna wants to solve SAT but she has
tried hard and failed. So she seeks help from an all powerful prover named Albus. More
precisely, she seeks advice from Albus regarding an instance I of SAT to decide whether
it is satisfiable or not. If I is indeed satisfiable, then Albus can find the solution (he is
all powerful, remember) and write it down for Luna. Luna, however, is a bit paranoid
and she is worried that Tom may be impersonating as Albus and trying to fool her. So
she asks Albus to write down in a precise format and if there is any discrepancy, she just
rejects.

So NP is the set of decision problems for which Luna can ask advice from Albus
in a precise format such that for YES-instances, Albus can write down a solution which
Luna can verify and convince herself that the instance is YES, while for NO-instances
no solution from Albus, or from Tom impersonating as Albus, can ever fool Luna into
believing that the instance is a YES-instance.

Remark: “What’s that N in NP?” NP does not stand for “not polynomial”. Rather, it
stands for “non-deterministic polynomial”. If our algorithm (or Luna) is allowed to make
divine guesses (advice from Albus), then for YES-instances there is a guess which leads to the
correct resolution, while for NO-instance all guesses lead to rejection. The concept of non-
determinism is a deep one and there are some computation models where non-determinism,
in fact, doesn’t give any power. Whether it does for polynomial time algorithms, is, quite
literally, a million dollar question.

b
Exercise: Prove P ⊆ NP.

Question 1.
P

?
= NP

The famous P vs NP question asks whether NP ⊆ P or not? Is there any problem in
NP that is not in P? Is there any problem for which solutions can be verified efficiently
but can’t be found efficiently? We don’t know.

8

4.1 NP-hardness and NP-completeness

Although we don’t know whether P = NP or not, we do know in a sense the hardest
problems in NP. This is one of the deepest facts in computer science and is due to Stephen
Cook and independently, Leonid Levin.

Theorem 1 (Cook-Levin Theorem). Let Π be any problem in NP. Then, Π �poly SAT.

We already saw SAT was in the class NP. The above theorem says any problem in
NP is “easier” than SAT. Thus, if we have a polynomial time algorithm for SAT, then
there is a polynomial time algorithm for all problems in NP. Amazing, isn’t it? To prove
P = NP, that is to argue about two sets, we just need to argue about one element in the
set NP. On the other hand, if we can prove SAT has no polynomial time algorithms, then
we prove P 6= NP; we have found one element in NP \P. Conjecture 1 asserts this latter
state of affairs.

But we know there are harder problems than SAT. Lemma 3 and Lemma 4 shows this.
And thus by transitivity Lemma 2 we get that for any problem Π ∈ NP, we have Π �
3SAT and Π � IS as well. This motivates the following definitions.

Definition 5. A problem Π is NP-hard if Π′ � Π for any Π′ ∈ NP.

That is, Π is NP-hard if its harder than all problems in NP. Theorem 1 implies that (a)
SAT is NP-hard, and (b) to show Π is NP-hard, all we need to show is SAT � Π. Thus,
3SAT and IS are NP-hard problems.

Definition 6. A problem Π is NP-complete if it is (a) in NP and (b) is NP-hard.

NP-compelete problems form an equivalence class. By definition, for any two NP-
complete problems Π,Π′, we have Π � Π′ and Π′ � Π. Since the exercise above shows IS
is in NP and we know it is NP-hard, we get IS is indeed NP-complete.

We end this lecture by saying that all problems don’t lie in NP. It may seem that
verifying a solution should be simple. But that intuition is perhaps misplaced. Here is an
example and you should convince that verifying the solutions don’t seem simple.

#IS
Input: Same as IS – a graph G and a number K (note K could be as large as 2n if n is
the number of vertices in G).
Output: Decide whether or not the number of independent sets in G is ≤ K.

9

	Decision Problems
	Polynomial Time Reductions
	A ``Hard'' Problem
	P vs NP
	NP-hardness and NP-completeness

