CS 31: Algorithms (Spring 2019): Lecture 4
Date: 2nd April, 2019
Topic: Divide and Conquer 2: MaxRangeSubArray, Karatsuba
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.
Please email errors to deeparnab@dartmouth.edu.

1 Maximum Range Subarray

In this problem, we are given an array A[l : n] of numbers (think integers or reals), and
the goal is to find i < j such that A[j] — A[¢] is maximized.

MAXIMUM RANGE SUBARRAY

Input: Array A[l : n] of integers.

Output: Indices 1 < i < j < n such that A[j] — Ai] is maximized.
Size: n, the length of A.

Once again, there is a trivial O(n?) time algorithm; go over all pairs (¢, j) and choose
the one that maximizes A[j] — A[i]. Once again, we think of a divide and conquer algo-
rithm. Suppose we solved the problem on A[l : n/2] and A[n/2 + 1 : n]. More precisely,
suppose (i1,71) was the MRS for A[l : n/2] and (i3, jo) was the MRS for Ajn/2 + 1 : n|.
Clearly both of these are candidate or feasible solutions for A[l : n|.

Are there other candidate solutions? Yes, and these are of the form (i, j) with i < n/2
and n/2 < j. Is it any easier to find such “cross” (i, j) pairs? In this case the answer is a
resounding yes!: since we are trying to maximize A[j] — A[i], we should choose j which
maximizes A[j] in n/2 < j < n and choose i such that A[i] is minimized in 1 < i < n/2.
These are O(n)-time operations; a win over O(n?)!

1: procedure MRSO(A[L : n]):

2 > Returns 1 < i < j < n maximizing A[j] — A[i].

3 if n = 1 then:

4 (7,7) < (1,1). > Singleton Array

5: return (7, j).

6 m <+ |n/2]

8 (i, J2) < MRSO(A[m + 1 : n))

9: i3 <— arg minj <;<,, A[t] > Takes O(m) time

10: J3 4— arg max,,+1<t<n Alt] > Takes O(m) time

11: return best among (i1, j1), (Z2, j2), (i3, j3). > Takes O(1) time

As in merge-sort and counting inversions, if 7'(n) is the worst case running time of
MRSO0, then looking at the running time on the worst array of length n, we get

T(n) <T(|n/2])+T([n/2]) + Oa(n)

which evaluates to 7'(n) = ©(nlogn). This seems good, but in fact we can actually do
better using a similar idea as discussed in counting inversions algorthm: Ask More!

If you “opened up” the recursion tree, you would observe that the O(n) time to com-
pute the max’s and the min’s in Lines 9 and 10 seems repetitive; the same comparisons are
made more than once. This gives an idea of what to ask more for; we want our maximum
range sub-array algorithm also returns the maximum and minimum of that sub-array.
This gives us the next algorithm.

1: procedure MRS(A[1 : n)):
% > Returns (s, t,1, j) where
o Alj] — Ali| is maximized, and
e 5,1 are the indices of the min and max of A, respectively.

if n = 1 then:

return (1,1, 1, 1) > Singleton Array

m < [n/2]

(s1,t1,71,51) <~ MRS(A[L : m])

(82,12, 12, j2) <~ MRS(A[m + 1 : n])

s < argmin(A[s;], Alse]) and ¢ <— arg max(Alt;], Alts]). > Takes O(1) time
(i,7) < best solution among { (i1, j1), (i2, j2), (S1, t2) }.> Takes O(1) time
10: return (s, t,1, 7).

The conquer step in Line 8 takes only O(1) time: the max of the whole array is the
max of the maxima in the two halves. Same for the minima. Therefore, the recurrence
inequality becomes

T(n) <T([n/2]) +T([n/2]) + O(1)
solving which gives us the following.

Theorem 1. The MRS algorithm returns the maximum-range sub-array in O(n) time.

2 Multiplying Polynomials Faster: Karatsuba’s Algorithm

Next we consider the problem of multiplying polynomials. The input is the (n + 1) coeffi-
cients of two univariate degree n polynomials p(z) and ¢(z) given as P[0 : n] and Q[0 : n].
That is,

pa) =D Pl and gl) =) QU]

2

We desire to output the coefficients the polynomial 7(z) = p(x)-¢(x). Note that the degree
of r(z) is 2n, and thus the coefficients needs to be stored in an array R[0 : 2n]. We also
assume that every P[i], Q[j] are “small” numbers and so they can be added and multiplied
in ©(1) time'.

An O(n?) time algorithm follows from the formula for R[k] which is as follows:

w<k<wm BE= Y Pli-qp =z Qg ks
> thomy<i<n LIl - Qlk —d] ifn <k <2n
(1)
Do you see this? By the way, in signal processing this has another name. The array
R[0 : 2n] is called the convolution of the two arrays P[0 : n| and Q[0 : n]. The above
formula gives a O(n?)-time algorithm to compute the convolution.

0<i,j<ni+j=k

We now show how Divide-and-Conquer gives a faster algorithm.

Remark: The story goes that in the early 1960s the famous Russian mathematician Andrei
Kolmogorov held a seminar with the objective to show that any algorithm needs Q(n?) to
multiply two degree n polynomials. After the first meeting, a young student named Anatoly
Karatsuba came up with the algorithm we are about to describe. Kolmogorov canceled the
remainder of the seminar.

Let m = [n/2]. Consider the polynomial p(x) and write it as

p(z) = pi(z) + 2™py(z) where p,(z) = 2 Plilz" and po(z) = N Pim+is ()
Similarly write
o) = a1(2) + 2" a(x) where qi(a) = 3. QUle’ and (o) = Y. QI+l ()

I
o
.

Il
=)

This gives us the following formula for r(z) = p(z) - ¢(z).
r(@) = (pu(x) +2"pa(x)) - (qu(x) + 2" g2 ()
= (n@-a@)+o" (16@) 66 +) a@) 2 (@) 6k) @
Now note that all four polynomials p; (), p2(x), ¢1 (), ¢2(z) have degree < [n/2]. There-

fore, (4) implies that r(x) can be computed by recursively multiplying the four pairs

(p1(z), 1 (x)), (p1(2), @2(2)), (p2(x), ¢1(x)), and (p2(x), g2(x)). Subsequently, we need to add
these polynomials up, but adding polynomials is a simple ©(n) operation.

UIf they are d-digits, this is what was studied in the Supplemental Problem : Number Theory set — take
a look.

To sum, the above recursive algorithm has the following recurrence inequality: 7'(n) <
4T([n/2]) + ©(n). We apply the Master Theorem and get T'(n) = O(n?). Sigh! Much ado
about nothing?

Next comes the Aha! insightful observation. We observe that we really don’t need the
individual products p;(z) - ¢2(z) and pa(x) - ¢1(x); rather we need just their sum.

Observation 1.
P(@)ar(@) +pa(2)ar(@) = (p1(2) +p2(0)) - (1(2) + () = (@) @1(2)) = (p2le) - ol

Therefore, the (4) can be computed using 3 multiplication of polynomials of degree

'n/2]. These three are (p1 () ql(x)>, (pg(x) : qQ(x)), and ((pl(x) 4 po(@)) - (qu(2) +q2(:v))).
After computing this, the polynomial 7(z) can be computed using (4) and Observation 1
with ©(1) polynomial additions and subtractions. Now, the recurrence inequality gov-
erning the above algorithm becomes

T(n) <3T([n/2]) +O(n)
which gives us the following.

Theorem 2. The algorithm KARATMULTPOLY multiplies two n-degree univariate poly-
nomials in O(n'°%23) = O(n!%%) time.

1
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:

14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

.by

25:
26:

27:
28:
29:
30:

: procedure KARATMULTPOLY(P[0 : n], Q[0 : n]):> We want to return R[0 : 2n].

if n =0, 1 then:
return R[0 : 2n] using the naive multiplication
m = [n/2].

> Recall definitions of py(x), p2(x), ¢1(x), ga(x) from (2),(3)
for0<i:<m-—1do
P'[i] = (P[i] + P[m +1])
Q'li] = (Ql] + Qm +1])
if n > 2m — 1 then: > In which case n = 2m since m = n/2orm = (n+1)/2.
P'[m] = P[n]
Q'Im] = Qln]
else:
P'lm] = Q'[m] =0
> Now P’ has the coefficients of pi(x) +pa(x). Q" has the coefficients of ¢ (x) +ga ().
> Their degrees are m — 1 or m depending on the parity of n.
> The else statement above forces degree m.

Ry[0:2(m —1)] = KARATMULTPOLY (P[0 :m — 1],Q[0 : m — 1])
R5[0: 2(n —m)] = KARATMULTPOLY (P[m : n], Q[m : n])
R3[0 : 2m| = KARATMULTPOLY (P'[0 : m|, Q[0 : m])
> Ry has the coefficients of py(x) - ¢1(x)
> Ry has the coefficients of pa(x) - ga(x)
> Ry has the coefficients of (p1(x) + pa2(x)) - (¢1(x) + ¢2(2))
> Also note that Ry, Ry, Rs all have length < 2m. We assume they all are 2m length
padding 0’s.
for 0 < ¢ < 2m do:
Ryli] = (R3] — Ra[t] — Reli])
> Ry has the coefficients of p(x) - ga(x) + p2() - ¢1(x) and is degree 2m
for 0 < ¢ < 2ndo:
> We assume an array ‘returns 0 if indexed out of its range. For instance, R4[—1]

returns 0 and Ry [2n] returns 0.

31:

> When you actually code it, you need a few “if” statements to implement the

above. A drill will ask you to do this. Please do that — it’s super instructive.

32:

return R[0 : 2n]

	Maximum Range Subarray
	Multiplying Polynomials Faster: Karatsuba's Algorithm

