
CS 31: Algorithms (Spring 2019): Lecture 6
Date: 9th April, 2019

Topic: Dynamic Programming 1: Subset Sum
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please notify errors on Piazza/by email to deeparnab@dartmouth.edu.

The next few lectures we study the method of dynamic programming. To set the idea
behind dynamic programming, let’s revisit what we did for divide-and-conquer (D&C).
In D&C, given an instance of a problem, we broke it into instances of smaller sub-problems.
We recursively solved the sub-problems. Then we combined the solutions of the sub-
problems, often in a quite clever way, to obtain a solution to the original problem.

In Dynamic Programming (DP), the situation is similar but subtly different. Here,
given an instance of a problem, we consider the solution to the problem. Of course, we
don’t know the solution, but we know it exists, and we abstractly think of it.

Next, we need to observe that this solution actually can be broken up into solutions to
smaller subproblems. If we can’t observe this, then perhaps dynamic programming can’t
solve our problem. This is so crucial that the textbook CLRS has given it a name – optimal
substructure.

Do you see the subtle difference between what D&C does and what DP does? D&C
breaks a problem into two; DP needs the solution to break into two. Of course, all this is
way too abstract to appreciate right now. Let’s reinforce this with examples.

1 Subset Sum

SUBSET SUM
Input: Positive integers a1, . . . , an, Target positive integer B.
Output: Decide whether there is a subset S ⊆ {1, . . . , n} such that

∑
i∈S ai = B? If

YES, return the subset.

What is a naive algorithm for the Subset Sum problem? Seems like one needs to go
over all the subsets of {1, 2, . . . , n} – which takes Ω(2n) time. Not good. Subset Sum is one
of the poster child problems for Dynamic Programming. Let’s see how it works.

Given the instance (a1, . . . , an;B) of Subset Sum, let us assume there is a set S of these
numbers which sum to B. Fix this set S in your mind. Can we “break” this set S into
subsets which are solutions to “smaller Subset Sum instances”?

What are smaller subset-sum instances? It could be small in two ways: (1) fewer
number of ai’s, that is, n, or (2) smaller B. We see below that the solution S indeed
“breaks” into solutions to smaller problems.

1



• Suppose someone tells us that the number an (this is a number we read from the
input) is not in the set S. Then, we can say S = S \ an is a solution to the Subset
Sum instance (a1, . . . , an−1;B).

• Suppose now someone tells us that the number an is in the set S. Then, we can say
S \ an (a subset of S) is a solution to the Subset Sum instance (a1, . . . , an−1;B − an).

Good, this is progress. S must satisfy one of the two cases above, and in each case a
very particular subset of S is a solution to a smaller subproblem. The subproblems are
different in each case, but nevertheless in both cases they are smaller. In the first case, n
goes down; in the second case, both n and B go down.

Next, we see that the converse is true: in each of the two subproblems, a solution to the
subproblem can be made into a solution we care about. Indeed,

• if one gives us a subset T which is a solution to (a1, . . . , an−1;B), then the same T is
a solution to (a1, . . . , an;B) as well;
• if one gives us a subset T which is a solution to (a1, . . . , an−1;B − an), then T + an is

a solution to (a1, . . . , an;B) as well.

We have now observed the optimal substructure in action. The main idea was to fix this
abstract solution S and branch on one of the two conditions (one of which must occur):
an ∈ S or an /∈ S. Given a solution to any of these cases, we can build up a solution to the
original problem. (This is kinda like the combine step of divide-and-conquer but usually
much more straightforward)

Once you have gone over the above in your head, it is time to make things precise
using correct definitions. Here is the definition useful for the subset sum problem; let us
make it, and then we can go over why we made this definition.

Definition: For any integer 0 ≤ m ≤ n; 0 ≤ b ≤ B, we define F (m, b) = 1 if there exists a
subset S ⊆ {1, 2, . . . ,m} such that

∑
i∈S ai = b.

Why is this the definition we are making at this point? Well firstly, we desire to find the
answer F (n,B) (we also want to find the subset if F (n,B) = 1, but baby steps). Second
we observe that the above argument converted the “search among a1, . . . , an” to instances
“searching amng a1, . . . , an−1”. This linear ordering is actually very important: this allows
us to pass the first parameter m which searches among a1, . . . , am. Finally, why did we
pass “b” as a parameter to the function? Again, this is because in the observation we made
above, we note that in one of the subproblems the target parameter changed from B to
B − an. This is the reason we passed the target into the function.

Ok, so what good is this definition? It is actually super useful because it allows us to con-
vert the “English intuition” of optimal substructure mentioned above into a recurrence
relation, as we show below. And why are recurrence relations useful? Because they imme-
diately lead to recursive algorithms. These recursive algorithms will be “disastrous” just

2



like how the recursive algorithm for Fibonacci numbers was. But we can convert them
into bottom-up iterative good algorithms.

Claim 1.

• (Base Cases.) F (m, 0) = 1 for all 0 ≤ m ≤ n. F (0, t) = 0 for all t > 0. F (m, t) = 0 for
any t < 0.

• (Recurrence.) For any m ≥ 1, b > 0; we have

F (m, b) = max (F (m− 1, b), F (m− 1, b− am))

Proof. The base case (often) follows from the definition. F (m, 0) = 1 because the empty
subset of {1, 2, . . . ,m} always sums to 0. Since all ai’s are positive, F (m, t) = 0 for all t < 0
since we can’t get a negative number by adding positive numbers. F (0, t) = 0 if t > 0,
since the only subset of the empty set is the empty set which sums to 0.

Let us now prove the recurrence equality. We do this by proving two inequalities.

(≤): The proof is precisely the English description above written rigorously. The skeleton
of this proof will form the structure of most dynamic programming arguments we
will see.

If F (m, b) = 0, then the inequality follows since the RHS is ≥ 0. So suppose
F (m, b) = 1. That is, there is a subset S ⊆ {1, 2, . . . ,m} which sums to b. If am ∈ S,
then S \ am ⊆ {1, 2, . . . ,m − 1} sums to b − am, implying F (m − 1, b − am) = 1. If
am /∈ S, then S ⊆ {1, 2, . . . ,m− 1} sums to b, implying F (m− 1, b) = 1. Since one of
the two cases must hold; F (m, b) ≤ max(F (m− 1, b), F (m− 1, b− am)).

(≥): This is the “conversely” part of the argument we made above.

F (m, b) ≥ F (m− 1, b) because if there is indeed a subset T of {1, 2, . . . ,m− 1}which
sums to b, then T also a subset of {1, 2 . . . ,m} that sums to b.

Similarly, F (m, b) ≥ F (m − 1, b − am) because if there is indeed a subset T of
{1, 2, . . . ,m − 1} which sums to b − am, then T + am is also a subset of {1, 2 . . . ,m}
that sums to b.

Remark: “Do we really need to always prove the recurrence equality?,” is a common ques-
tion here. Well, why not? For one you will then be sure that you are correct. The English
explanation is necessary and is often OK. But a proof always is necessary to be sure you are
not pushing things under the rug or pulling wool over your own eyes.

Once we have obtained the recurrence, we are really almost done. The “clever” part is
over. What remains is systematic to all DP algorithms and can be picked up with practice.

We start with the disastrous implementation by just recursively calling. I provide it
below in red: NEVER show this in public (but writing it privately is a very good idea).

3



1: procedure RECSUBSUM(m, b):
2: . Returns 1 if there is a subset of a1, . . . , am that sums to exactly b.
3: if b = 0 then:
4: return 1
5: if m = 0 and b > 0 then:
6: return 0
7: if b < 0 then:
8: return 0
9: return max (RECSUBSUM(m− 1, b), RECSUBSUM(m− 1, b− am) )

The above algorithm is correct (we are still solving the Yes-No question); but it is
disastrous for the reason the recursive Fibonacci algorithm was terrible. But we saw how
to fix that! And indeed, we fix the above RECSUBSUM analogously.

First we allocate space for a table. The dimensions correspond to the variables that are
passed in the recurrence. The range is from the base-case to the point we are interested
in.

1: procedure SUBSETSUM(B, a1, . . . , an):
2: . Says YES if there is a subset summing to B, otherwise N0
3: Allocate space F [0 : n, 0 : B] ≡ 0
4: F [m, 0]← 1 for all m.
5: F [0, b]← 0 for all b > 0. . Base Cases
6: for 1 ≤ m ≤ n do:
7: for 1 ≤ b ≤ B do:
8: if b− am < 0 then: . So we know F (m− 1, b− am) = 0 in this case
9: F [m, b]← F [m− 1, b].

10: else:
11: F [m, b]← max (F [m− 1, b], F [m− 1, b− am])

12: . At this point F [n,B] has the answer; if it is 1 there is a solution, otherwise not.

b
Exercise:

• Run the above algorithm by hand for the input (1, 2, 3, 4; 9).
• Implement this above algorithm and see it in action.

Recovery. The above algorithm works because the “table” F [m, b] contains the function
value F (m, b). However, we need more : we need that when F [n,B] = 1, we need a subset
S which sums to B. How do we find this?

One inefficient way to do this is that instead of F [m, b] being 0 or 1, we actually also
store a subset of {1, 2, . . . ,m} summing to b in the case F [m, b] = 1. This blows up the

4



space required by a factor n since each table could contain Θ(n) elements. But we don’t
need this; since we have the full table F [0 : n, 0 : B], we can use it to read out the subset
which sums to B as follows.

We start with an empty subset and “counters” m = n and b = B. We have F [n,B] = 1
(otherwise, we have answered NO). But since F [n,B] = max(F [n−1, B], F [n−1, B−an]),
one of these two must be 1. If F [n − 1, B] = 1, then we add nothing to B and decrease n
by 1. If F [n−1, B−an] = 1, then we add an to the subset and decrease B by an and n by 1.
We proceed iteratively, maintaining the invariant that the total sum of the subset plus the
“current B”, that is b, equals the original B and F [m, b] = 1. In the end, we reach m = 0
and since F [m, b] = 1, we must have b = 0 (the only base case with m = 0 that evaluates
to 1.) At this point the subset we have sums to exactly B. The full pseudocode for subset
sum with recovery is given below giving us the following theorem.

Theorem 1. SUBSET SUM can be solved in time and space O(nB).

Remark: Is this a polynomial time algorithm? To answer this, we need to define clearly
what a polynomial time algorithm is. An algorithm is polynomial time, if its running time
T (n) is, for large enough n, at most some fixed polynomial p(n) where n is the size of the
instance. We cheekily left out the size of the Subset Sum problem; the size after all is Θ(logB+∑n

i=1 log ai) = O(n logB) since we can throw away any ai > B. Now we observe that our
running time O(nB) is exponentially larger than the size of the problem; the B is the nub.
As stated, the above algorithm is not a polynomial time algorithm.

5



1: procedure SUBSETSUM(B, a1, . . . , an):
2: . Says YES if there is a subset summing to B, otherwise N0
3: Allocate space F [0 : n, 0 : B] ≡ 0
4: F [m, 0]← 1 for all m.
5: F [0, b]← 0 for all b > 0. . Base Cases
6: for 1 ≤ m ≤ n do:
7: for 1 ≤ b ≤ B do:
8: if b− am < 0 then: . So we know F (m− 1, b− am) = 0 in this case
9: F [m, b]← F [m− 1, b].

10: else:
11: F [m, b]← max (F [m− 1, b], F [m− 1, b− am])

12: . At this point F [n,B] has the answer; if it is 1 there is a solution, otherwise not.
13: if F [n,B] = 0 then:
14: return NO
15: . Recovery:
16: m← n; b← B; S ← ∅.
17: . Invariant:

∑
i∈S ai + b = B and F [m, b] = F [n,B] = 1

18: while b > 0 do:
19: if F [m− 1, b] = 1 then:
20: m← m− 1
21: S ← S
22: b← b
23: else: . In this case, we must have F [m− 1, b− am] = 1

24: m← m− 1
25: S ← S + m
26: b← b− am
27: . Check that the Invariant holds in both cases
28: . At this point, b = 0. Since invariants hold, we have

∑
i∈S ai + 0 = B.

29: return S

To recap, to design and analyze a dynamic program for the Subset Sum problem we
had the following ingredients. This is going to be the steps in all dynamic programming
algorithms. Indeed, for your problem set, I require you to write all of these.

1. Definition: A precise definition of the function which will be recursively represented.
Clearly mention the parameters which you are interested in.

2. The Base case: The “small” values at which the function’s value is known.

3. The Recurrence Relation: Clearly state the recurrence relation. Give an explanation of
why it is correct.

4. Proof: To be absolutely sure, give a proof of the recurrence relation.

6



5. Implemetation Pseudocode Write the correct implementation of the recurrence a la Fi-
bonacci using tables. Be sure that you are filling up the tables in the correct order.
Often this is standard, but you will see some tricky examples.

6. Recovery Pseudocode. Write the code for recovery (when needed) by back-tracking on
the table that you obtained. This may seem non-trivial, but it is actually straightfor-
ward after a little practice.

7. Running Time and Space. Write down the running time of and also space used by
your algorithm.

7


	Subset Sum
	Knapsack Problem.

