
CS 30: Discrete Math in CS (Winter 2019): Lecture 1
Date: 3rd January, 2019 (X-hour)

Topic: Discrete Math: What, Why, How?; Direct Proofs
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

1 Discrete Math: what and why?

Mathematics forms the bedrock of all sciences and computer science is no exception. The dif-
ference, however, from the other natural sciences is in the type of mathematics. In the natural
sciences, one needs the language of mathematics to describe things in continuous motion – think
electricity, reagents, cell fluids, prices, etc. In computer science, we need the language of mathe-
matics to argue about discrete objects such as bits, integers, a set of files, a network, etc. The first
objective of this course is to teach you that language; a language you will be using in all other
aspects of computer science.

The second objective of this course is to focus on proofs. In this course, we will make many
precise, rigorous statements and prove them. We will learn various styles of proving, and we will
see many examples of proofs. But there is only one way to really learn how to prove, and that is
also the same way one learns how to be a good woodworker – hours and hours of practice; you
will clock in a few before we are done.

2 Direct Proofs

• First proof of CS 30. We begin the class with a simple fact.

Theorem 1. The sum of two odd numbers is even.

The first thing when faced with a proposition is to verify the truth by looking at some ex-
amples. Here goes: 3 + 3 = 6, and 6 is even. Good. 1 + 7 = 8 and 8 is even. Good. One
could stop here but that won’t be a proof. That would be nothing more and nothing less
than looking at some examples. Here is the proof.

Proof. Let a and b be any two odd numbers. Since they are odd, a = 2k+ 1 for some number
k and b = 2`+ 1 for some number `. These two numbers k and ` are completely defined by
a and b (for instance, they can be found by doing a//2 and b//2, respectively, in Python 3.)
Therefore,

a+ b = (2k + 1) + (2`+ 1)

= 2k + 2`+ 2

= 2(k + `+ 1)

That is, a+ b is even.
b
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Exercise: Prove : The product of any two positive odd numbers is always odd.
b

Exercise: Prove : If a is a positive even integer, then a2 is divisible by 4.
b

Exercise: Prove that the sum, difference, and product of two rational numbers is always rational.
Furthermore, if both are non-zero, then their ratio is also rational.

• The Summation Formula. The summation operator is very much like the
∫

operator/notation
from calculus. Consider a sequence of numbers a1, a2, . . .’s which are indexed by i. The vari-
able i is the iterator which is usually an integer and starts at p and initiates a counter (called
sum) to 0. If q ≥ p, then the iterator increments by 1 till it reaches q adding ai to the counter.
If q ≤ p, then the iterator decrements by 1 till it reaches q adding ai to the counter. The
answer is the final value of the counter sum. In short,

∑q
i=p ai is the output of the following

for-loop; in particular, for any summation given to you, you can write the following code
and find the answer.

∑q
i=p ai :=

1: sum = 0.
2: for i = p to q do:
3: . If q ≥ p, i is incremented; otherwise, decremented.
4: sum = sum+ ai.
5: return sum.

• Sum of the first n natural numbers.

Theorem 2. For any number n ≥ 1, we have

n∑
i=1

i = 1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2

As before, you should check if the claim is correct. For instance, if I set n = 3, the LHS
evaluates to 1 + 2 + 3 = 6 and the RHS evaluates to 3 · 4/2 = 6. Another sanity check you
should do is that the LHS is an integer, is the RHS an integer? Yes it is – for any n either n or
n+ 1 is even, and this divisible by 3. b

Exercise: Is n(n+1)(2n+1)
6 always an integer for any n ≥ 1? You may wait a couple of weeks to

do this exercise.

Proof. We learn an important trick of change of variables. Note that changing variables j =
n− i+ 1, we can write we can write

S =

n∑
i=1

i =

1∑
j=n

(n− j + 1) =

n∑
j=1

(n− j + 1) =

n∑
i=1

(n− i+ 1)
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The first equality is definition. In the second equality, we have changed the variables j ←
n− i+1. The third equality follows from commutativity of addition. The fourth equality notes
that the name j can be changed back to i. Therefore, we get

2S =

n∑
i=1

i+

n∑
i=1

(n− i+ 1) =

n∑
i=1

(
i+ (n− i+ 1)

)
= (n+ 1) ·

n∑
i=1

1 = (n+ 1) · n

b

Exercise: Is the above formula correct for n < 1? How would the formula change?

b

Exercise: Given two integers a ≤ b, write a formula for
∑b

i=a i. Your final answer should only
depend on a and b (and not i).

b

Exercise: An arithmetic progression (AP) is defined by two integers (a, d). Given these, the
corresponding AP is the sequence a1, a2, a3, . . . where ai := a + (i − 1) · d. For example, the
sequence 1, 2, 3, . . . is the AP generated by (1, 1). Similarly, 2, 4, 6, 8, · · · is the AP generated by
(2, 2).

Given (a, d) and the corresponding AP sequence a1, a2, . . ., write a formula for
∑n

i=1 ai. Your
answer should depend only on a, d, and n.

Once you have proved and know the above theorem, you can prove more theorems as corol-
laries.

Corollary 1. The sum of the first n even numbers is n(n+ 1).

Proof. The ith even number is 2i. Therefore, the sum of the first n even numbers is

D :=
n∑

i=1

(2i)

But the RHS is nothing but
n∑

i=1

(2i) = 2

(
n∑

i=1

i

)
And the paranthesized term in the RHS is what we figured out in Theorem 2. Substituting,
we get

∑n
i=1(2i) = 2 ·

(
n(n+1)

2

)
= n(n+ 1), which is what we set out to show.

b

Exercise: What is the sum of the first n odd numbers?

b
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Exercise: As mentioned in class, the above “trick” doesn’t work for summing the first n squares.
Here is a useful exercise: mimic the proof of Theorem 2 and figure out where you get stuck.

Remark: Before we move on, let me give a (famous) example of why proofs by examples are
not a great idea. Consider the following proposition.

Proposition 1. (Beware!) The number n2 + n+ 41 is a prime for all number n ≥ 1.

Let’s try n = 1; we get n2 + n + 41 = 43 which is prime. Good. Let’s try n = 2; we get
n2 + n+ 41 = 47 which is prime. Good. Let’s try n = 3; we get 53 which is prime. Good! Ok,
so let’s try a random n – let’s try n = 10; we get n2 + n + 41 = 151 which is prime! Ok, this
must be true.

It is quite tempting to conjecture at this point that the above proposition may be true. Indeed, if
we had no computers and were doing this by hand, we would get primes all the way to n = 40.
On the other hand, 412 + 41 + 41 is, well, 41 × 43. So, no, the proposition isn’t true. It had a
good run, but then it fell. We found a counterexample to the proposition, thereby proving it is
not true! All it takes is one counterexample.

But there are many other propositions for which neither has one found a proof, nor has one found
a counterexample. Here is another famous one (there are many involving numbers):

Proposition 2. Every even number greater than 4 can be written as a sum of two primes.

You can, and you should, start checking. And many have. A lot. All the way up to 400 trillion.
No counterexample. But no proof yet either. The world is waiting...
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