
CS 30: Discrete Math in CS (Winter 2019): Lecture 10
Date: 18th January, 2019 (Friday)

Topic: The RSA Algorithm
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

1. Recap. Let us recap some facts we will be needing for todays class.

(a) For any three positive numbers a, b, n, we can efficiently compute ab mod n using MODEXP.

(b) For any two positive numbers a, b, we can efficiently compute integers x, y such that xa+ yb =
gcd(a, b) using EXTGCD.

(c) In particular, if gcd(a, n) = 1, we can efficiently compute integers x, y such that xa+ yb = 1.

(d) Therefore, if gcd(a, n) = 1, we can efficiently compute a−1 modulo n; the number b such that
ab ≡n 1. We do this by taking x mod n for the x in the above bullet point.

(e) If p is a prime and gcd(a, p) = 1, then ap−1 ≡p 1.

(f) (Problem Set 3, 2(d)): If p|a and q|a where p and q are distinct primes, then pq|a.

2. Cryptography. Alice wants to send a message m to Bob. Unfortunately, the channel in which
Alice is speaking to Bob is completely transparent and can be plainly read. So, she wants to
instead send a cipher c such that (a) upon receiving c, Bob can figure out m, but (b) any one
else, say Eve, upon receiving c can’t obtain any information about m.

As can be seen, some asymmetry is required between Bob and Eve. The “traditional” way of
achieving this is that Alice and Bob pre-decide on some information called a key and use it
to figure out c from m. This key is something that only Alice and Bob know; in particular, the
eavesdropper Eve doesn’t.

For instance, the key could be some long integer k of the same length as m, and Alice can
encrypt m to get cipher c by letting ci = (mi+ ki) mod 10 for every digit i. Note that Bob can
easily decrypt since he has the key k: he does the opposite action of (ci − ki) mod 10. Also
note that Eve can have no idea what m was by just looking at c since k can be an arbitrary
key.

One issue with the above protocol is that Alice and Bob need to agree upon the key before-
hand. It can be shown that if the same key is used repeatedly, then Eve can actually figure
out the key (especially if she can impersonate as Alice). So, keys need to be constantly gen-
erated and shared; but then if Alice and Bob can share keys secretly often, why not just use
that time to swap the messages?

3. Public Key Cryptography (PKC). This is a fantastic idea which gets over the key sharing
business.

In this every person who wishes to receive a message (say Bob, or any website who needs
credit card info) generates two keys. One key is the public key pk which they announce to the
world. The other is the secret key sk which they guard with their lives. To summarize, the

1

key they generate is a tuple (pk, sk); pk they tell everyone, and sk they tell no one (including
Alice).

A PKC protocol consists of two functions/algorithms Enc and Dec. Both of these are also
public; the code is also published by Bob.

Now, if Alice wants to send a message to Bob, she can encrypt a message m using the public
key to get

Enc(m, pk) 7→ c

She then sends c across to Bob. Note that Eve knows c and knows pk and also knows the
algorithm Enc. She still shouldn’t have any clue what m is. In other words, it shouldn’t be easy
for Eve to invert this function Enc.

Bob, upon receiving the cipher c, then uses the decryption algorithm Dec to get the message
back. This decryption algorithm will use both keys.

Dec(c, pk, sk) 7→ m

4. The RSA Algorithm.

(a) Key Generation.
• Bob picks two primes p and q; these will be large, distinct primes.
• Let N := pq and let φ := (p− 1)(q − 1).
• Bob picks another number e such that gcd(e, φ) = 1.
• Bob computes the multiplicative inverse of e modulo φ. Call it d.
• Bob’s public key is (e,N).
• Bob’s secret key is d.

(b) The Encryption algorithm is as follows.
• Suppose Alice wants to sendm to Bob. We assumem ∈ {1, 2, . . . , N−1}; otherwise,

Alice needs to break her message into pieces.
• Alice’s cipher c = me(mod N); she evaluates this using Bob’s public key (e,N)

and uses modular exponentiation.
(c) The Decryption algorithm is as follows.

• Upon receiving c, Bob recovers the message m using his secret key d by computing
cd(mod N).

5. RSA example. Suppose Bob selects two primes say p = 5 and q = 11. Then N = 55 and
φ = 40. Bob selects a number e = 13 such that gcd(e, φ) = 1. He then calculates d = e−1 w.r.t
φ using the EXTGCD algorithm; in this case 37 = 13−1 with respect to 40. Bob’s public key
is (13, 55) while is secret key is 37.

Now suppose Alice wants to encrypt a message in {1, 2, . . . , 54}; say 29. The encryption is

Enc(21, 13, 55) = 2913(mod 55) = 24

To decrypt this, Bob does the following

Dec(24, 37) = 2437(mod 55) = 29

2

6. Correctness of RSA. We prove that as long asm ∈ {0, 1, 2, . . . , N−1}, then if Alice sends the
cipher according to the RSA encryption algorithm, then Bob will get back the same m when
he decrypts. In particular, we prove the following theorem.

Theorem 1. Let (e,N), d be the (public,secret) key pairs generated by Bob. Then for any
m ∈ {0, 1, . . . , N − 1}, Alice sends c = me mod N . Then, cd mod N = m.

Proof. We show this proof in the case when gcd(m, p) = gcd(m, q) = 1; we leave the other
cases as an exercise.

We need to show cd mod N = m, that is, we need to show med ≡N m, that is

We need to show
(
med −m

)
≡N 0 (1)

Now, d is the inverse of e modulo φ = (p− 1)(q − 1). Thus,

ed ≡φ 1 ⇒ ed = φ · x+ 1 for some integer x

Therefore, (
med −m

)
≡N

(
mφ·x+1 −m

)
≡N m ·

(
mφ·x − 1

)
(2)

Now, gcd(m, p) = 1 implies, using Fermat’s Little Theorem, mp−1 ≡p 1. Taking both sides to
the power (q − 1)x, we get m(p−1)(q−1)x ≡p 1, that is,

mφ·x − 1 ≡p 0

Similarly, since gcd(m, q) = 1,
mφ·x − 1 ≡q 0

Now we are going to use the PSet3,2(d) to conclude

mφ·x − 1 ≡pq 0 that is mφ·x − 1 ≡N 0

Substituting in (2), we see that we establish (1).

7. A very short discussion on security of RSA. Why RSA is secure is beyond the scope of this
course. But take CS62 someday or some other security course.

However, it is useful to point out one thing that would surely make RSA insecure. Suppose,
we had a fast procedure to factor numbers. That is, given N we could find the factors which
form N . For example, given 21 we would know it is 3 × 7. At first you may feel, sure, such
a procedure must exist. But imagine the case when N has 256 digits.

As of today, no efficient procedure is known for factoring such large numbers. And indeed
RSA’s security completely depends on this. For suppose we could factor, then given N
which is promised to be pq, we could factor and get p and q. And then we could get φ, and
then we could find the inverse of e with respect to φ and get Bob’s secret key d.

3

