
CS 30: Discrete Math in CS (Winter 2019): Lecture 18
Date: 6th February, 2019 (Wednesday)

Topic: Combinatorics: Using Functions to Count, Division Principle
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

1. Maps to Count. Often when faced with counting the number of elements of a certain set S,
we see a correspondence/mapping to another set A whose cardinality we already know. In
that case, this mapping can be used to count the number of elements in S.

2. Bijective Maps. The best kind of maps are bijective maps. Suppose we want to figure out |S|.
If we can find a bijection f : S → A, where A is a set for which we already know |A|, then
we are done! Since f is a bijection we have |S| = |A|; the latter we already know! A very
useful example is given below, and a few more are in the UGP. But we will see more shortly.

(a) The number of subsets of a finite set. Let U be a finite set with |U | = n. How many subsets
does U have? That is, if we define

P(U) := {S : S ⊆ U}

then what is |P(U)|? By the way, the set P(U) of subsets of U has a name; it is called
the power set of U .
The answer to the above question is 2n (Tattoo this in your brain). Why 2n? The simplest
proof is via a bijective map. What other set do you know which has 2n elements; we
saw last class that the set

{0, 1}n := {~x = (x1, x2, . . . , xn) : xi ∈ {0, 1}}

of length n bit strings is of size 2n. Can we find a bijection from P(U) to {0, 1}n?
Here is a bijection. First rename the elements of U to be {u1, u2, . . . , un}. Given a subset
S ⊆ U , consider the following n-bit string ~x where xi = 1 if and only if ui ∈ S. Note
that the map takes every subset S ⊆ U to an n-bit string.
The map is surjective; given any bit string ~x, consider the subset S which contains ui if
and only if xi = 1. This set S maps to ~x. The map is also injective; given two subsets
S 6= T , there must be an element ui which is in S but not in T , or vice-versa. Their maps
also differ on the ith bit.
Since the map is bijective, we get |P(U)| = |{0, 1}n| and the latter, we know from last
time using the product principle, is 2n.

(b) The number of odd subsets of a finite set. How many odd subsets does U have? That is, if
we define

O := {S : S ⊆ U, |S| odd}

then what is |O|?

1

To answer this, we actually find a bijective mapping from all the odd sets to all the even
sets. To this end, define

E := {S : S ⊆ U, |S| even}

We now define a bijective map from O to E when n ≥ 1.
To this end, let’s recall U = {u1, . . . , un}. Given an odd set S ∈ O, we map it to

g(S) =

{
S \ {u1} if u1 ∈ S

S ∪ {u1} if u1 /∈ S

First observe g is valid. Indeed, for any S, |g(S)| = |S|+1 or |S| − 1 which is even if |S|
is odd. Also observe g(S) ⊆ U . Thus, g(S) ∈ E .
We claim that g is surjective. How will you do it? Given any even set E ∈ E , you need
to find a set S ∈ O which maps to it. Can you do it? Think of the two cases: u1 ∈ E and
u1 /∈ E. Finish the details.
We claim that g is injective. To this end, fix two odd sets S and T which are unequal. If
both contain u1, then S 6= T implies S \ {u1} 6= T \ {u1}, that is, g(S) 6= g(T). If both
don’t contain u1, then S 6= T implies S ∪ {u1} 6= T ∪ {u1}, that is, g(S) 6= g(T). If one
of them contains u1, and the other doesn’t; so, for instance, suppose u1 ∈ S and u1 /∈ T ,
then note that u1 /∈ g(S) and u1 ∈ g(T); this implies g(S) 6= g(T).
Thus, g is a valid bijection fromO to E . This implies, |O| = |E|. How does it help? Well,
we know that every subset is either odd or even, but not both. That is, P(U) = O ∪ E
and O ∩ E = ∅. Thus, 2n = |P(U)| = |O|+ |E| = 2 · |O|. This implies, |O| = 2n−1. b

Exercise: Can you try to generalize the above argument to see how many subsets of U have
cardinality divisible by 3?

3. The Division Rule. Sometimes we cannot find a bijection from the set S we want to count
to a set A that we already know the count of. However, instead of finding an one-to-one,
surjective mapping from A to S, we can find a k-to-one surjective mapping from A to S.
This is also useful, for then |S| = |A|/k. The principle is encapsulated as follows.

Suppose we can find a mapping f : A → S such that (a) f is surjective, and (b) for every
s ∈ S, there is exactly k elements in A which map to s, then |S| = |A|/k.

Examples.

(a) How many anagrams are there of the letters in GOOD? There are 4 letters in the word, and
so there are 4! = 24 permutations of these letters. However, some of these permuta-
tions map to the same rearrangement. For example, if we mark the two O’s as O1 and
O2, then the two distinct permutations GO1O2D and GO2O1D map to the same rear-
rangement. Thus, there is a map from the set of all permutations to the set of valid
anagrams where two distinct permutations (two since there are 2 O’s) map to the same
rearrangement. This implies there are 24/2 = 12 rearrangements of the string GOOD. b

Exercise: How many ways can we rearrange the letters of TENNESSEE?

2

(b) How many different ways can we line up 5 red balls, 4 blue balls, and 3 green balls? This
is exactly the same logic as before. There are a total of 12 balls, and if each of these
balls were distinct, there would be 12! ways of arranging the balls in a line (sequence).
However, the balls are not distinct. The red balls are interchangeable, so are the blue
balls, so are the green balls.
So if we name the red balls R1, R2, . . . , R5, and all the blue balls B1, B2, B3, B4, and the
green balls G1, G2, G3 thereby making them distinct, then there are 12! sequences using
these characters. However we can map a bunch of these sequences to the same sequence
when the names are wiped out. For example, the sequence R1B1R2G1B2R3R4R5B3B4G2G3

is the same as R2B3R4G2B2R1R5R3B1B4G1G3, when the names are wiped out: they
both are RBRGRRRBBGG.
So how many sequences with names map to the same sequence without names? Well,
once we fix a pattern of colors, the permutation of the red balls’ names lead to the same
pattern. Similarly, with the blue balls. And with the green balls. Now we can apply the
product principle to see that the number of “collisions” equals the number of permu-
tations of red balls times the number of permutations of blue balls times the number
of permutations of green balls. This number is 5!4!3!. Thus the answer is 12!/(5!4!3!)
which is what it is...

(c) How many arrangements of a string are there? The above two arguments can be encapsu-
lated in the following powerful “formula”.

Theorem 1. Given a string s with k distinct characters where character i, 1 ≤ i ≤
k, appears ni times, where ni is a positive integer. Then, the number of distinct
rearrangements of s is

(n1 + n2 + · · ·+ nk)!

n1! · n2! · · · · · nk!

(d) How many n-length bit strings have exactly k ones? A corollary to the above is the another
very important identity. Note that a n length bit string with exactly k ones has exactly
n− k zeros. Thus, the above question is basically asking, how many distinct rearrange-
ments are there of a string with k ones and n − k zeros? Applying the theorem above,
we see the answer is n!

k!(n−k)! . We will meet this expression much more in the next two
lectures.

3

