
CS 30: Discrete Math in CS (Winter 2019): Lecture 23
Date: 18th February, 2019 (Monday)

Topic: Probability: Conditional Independence and Bayes Rule
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

1. Some Recap.

• Pr[A | B] = Pr[A∩B]
Pr[B] .

• A and B are independent events if Pr[A ∩ B] = Pr[A] ·Pr[B].
• If Pr[B] 6= 0, then an equivalent way of stating independence is Pr[A | B] = Pr[A].

2. Mutual and Pairwise Independence. Say A,B, C are three events. These are said to be
pairwise independent, if any pair of them are independent events. That is,

Pr[A ∩ B] = Pr[A] ·Pr[B], Pr[B ∩ C] = Pr[B] ·Pr[C], Pr[C ∩ A] = Pr[C] ·Pr[A]

These three events are mutually independent if these are pairwise independent and

Pr[A ∩ B ∩ C] = Pr[A] ·Pr[B] ·Pr[C]

b

Exercise: Describe three events which are pairwise independent but not mutually indepen-
dent.

More generally, given events A1, A2, . . . , An are mutually independent, if for any two disjoint
subsets S and T of {1, 2, . . . , n}, the event∩i∈SAi, that is the intersection of all events indexed
by S, and the event ∩j∈TAj are independent. b

Exercise: Describe three events A,B, C such that Pr[A ∩ B ∩ C] = Pr[A] · Pr[B] · Pr[C] but
they are not pairwise independent (and therefore not mutually independent).

3. Conditional Independence.

Consider the following two events. There lies in front of you a fair coin. Alice tosses it.
Then Bob tosses the same coin. Let A be the event that Alice gets heads. Let B be the event
that Bob gets heads. Are these independent? Even before doing the calculation, you would
say sure. Alice’s toss shouldn’t hinder Bob’s toss. Indeed, both Pr[A] = Pr[B] = 1/2 and
Pr[A ∩ B] = 1/4. These are independent. b

Exercise: Check that A and B are independent even when the coin is not fair, but instead it
came heads all the time, or came heads 90% of the time.
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Now consider a slightly different experiment. In a box lies two coins. One is fair. The other
is biased; it comes heads with probability 0.75. You pick up a coin from these two at random
and place it in front of you. Alice tosses it. Bob tosses the same coin. A and B are same as
above. Are these independent events?

To see (or at least get a hunch – in Math you should always have a hunch) that they are not
before doing any calculations, take the experiment to an extreme. Suppose both the coins in
the box were super un-fair; suppose one of them came tails all the time, and the other came
heads all the time. Then note, if A occurs, then B occurs with 100% probability (if Alice sees
a head, then she has for sure picked the all-heads coin, and so Bob will for sure see a heads
as he is tossing the same coin). On the other hand, B is not a sure-shot; if I had picked the
all-tails coin, then B doesn’t occur. Thus, A and B aren’t independent.

However, there is a third random event here. It is the event E which is whether I pick the fair
coin or not. I claim that A and B are independent if we condition on E . That is, I claim

Pr[A ∩ B | E ] = Pr[A | E ] ·Pr[B | E ]

Indeed, if I tell you that E has occurred, then the problem becomes the one asked before;
given a fair coin tossed by Alice and Bob, the events that they see heads is independent.

Remark:

Conditional Independence is a tricky concept. Be wary. Here are a couple of plausible potholes.

• A and B are independent events. Then they are also conditionally independent on
any event E . False. Example: Roll two fair dice. A is the event that the first dice is odd.
B is the event that the second dice is odd. These are independent events. Now consider the
event E that the sum of the two dice is odd.. What is Pr[A | E ]? You can now calculate
this – it is 1/2 as well. Similarly, Pr[B | E ] = 1/2. However, what is Pr[A ∩ B | E ]? Yep,
it’s zero. Independence can be lost upon conditioning.

• A and B are conditionally independent given E . Then they are conditionally inde-
pendent given ¬E as well. False. In its generality this is false, although in the above
example of coins, it is true. To see why it is false, we can consider again the setting of rolling
two dice. However, this time A occurs if the first die lands 1, and B occurs if the second die
lands 1. E is the event that the sum is 2; ¬E is the event that the sum is not 2.
Note: Pr[A | E ] = Pr[B | E ] = Pr[A ∩ B | E ] = 1. Thus, A and B are conditionally
independent given E . On the other hand, Pr[A | ¬E ] is something non-zero (figure out
what it is!), and Pr[B | ¬E ] is something non-zero. But, Pr[A ∩ B | ¬E ] is certainly
zero. Conditional Independence can be lost upon the negation of the event we are
complementing on.

4. Bayes Rule. Put simply, Bayes’ rule is the following observation: for any two events A and
B which each occur with non-zero probability

Pr[B | A] = Pr[A | B] ·Pr[B]
Pr[A]

(Bayes Rule)

The proof is trivial after we substitute the formula of conditional probability.
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We can expand it slightly more using the law of total probability to get

Pr[B | A] = Pr[A | B] ·Pr[B]
Pr[A | B] ·Pr[B] +Pr[A | ¬B] · (1−Pr[B])

(Bayes Rule - Opened up)

Why is this a big deal? We will look at three examples. But in a nutshell, it states that to
answer what is the probability of event B given event A, if we know (a) the total probability
of event B, and if (b) the probability of event A is easier to figure out, then we can get our
answer. The main applications come in when A is an “outcome” and B is a “hypothesis”;
Pr[B] is a “prior belief” on the hypothesis, and Pr[B | A] is our “posterior belief” given we
see the outcome event A.

Examples.

• Arithmophobia is a quality of life debilitating condition and should be detected as early as pos-
sible. Fortunately, the pharmaceutical company HAYSTEAM have come up with a test. It’s not
perfect. It has a false positive rate of fp = 1%; that is, on 1% of the healthy population, the
test detects the condition, It also has a false negative rate of fn = 2%. Again, this means that
2% of the afflicted population go undetected. It is assumed around 40% of the population may
be suffering from Arithmophobia.
You take the test and unfortunately it comes positive (the test says you have Arithmophobia).
What is the probability that you actually do?

What a story! But such situations abound. Easy-peasy if you know Bayes rule and
know how to set things up.
A be the event that you have the affliction. Now, you don’t know whether you do or
not (that’s why, presumably, you take the test). Before taking the test, you just look at
the statistics and believe that you are as likely as anyone else to have this condition.
Since 40% of the population have it, you conclude (reasonably)

Pr[A] =: pA = 0.4

P be the event that the test comes out positive on you. We are really interested in
figuring out Pr[A | P]. We will do so by applying Bayes rule.
First, is Pr[P | A] easy? That is, if you did have the affliction, what is the probability
that the test would catch it? The answer is (1− fn); you would be tested positive unless
we got a false negative. Thus,

Pr[P | A] = (1− fn) = 0.98

How about Pr[P | ¬A]? This is precisely the false positive rate. So,

Pr[P | ¬A] = fp = 0.01

Now to apply Bayes rule,

Pr[A | P] = Pr[P | A] ·Pr[A]
Pr[P | A] ·Pr[A] +Pr[P | ¬A] · (1−Pr[A])
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which simplifies to

Pr[A | P] = (1− fn)pA
(1− fn)pA + fp(1− pA)

= 0.985

Thus, if the test comes positive, then the chances you have the affliction gets close to
98.5%.

It is instructive to repeat the above calculations when Pr[A] is small, say Pr[A] =
0.1, that is, only 10% of the population have Arithmophobia. In that case, we get
Pr[A | P] = (0.98)(0.1)

(0.98)(0.1)+(0.01)(0.9) = 0.915. After the positive test, my belief that I have the
affliction goes from 10% to more than 90%.
If Pr[A] = 1%, however, then if you repeat the calculation you get that Pr[A | P] =
0.497. Thus, if the affliction is so rare that less than 1% of the people have the disease,
then a positive test (with the given rates) shouldn’t take your belief to more than a
random (fair) coin toss.
More generally, to have “high belief probabilities” the false-negative and false-positive
scores should be substantially smaller than the (prior) probability of the affliction (hy-
pothesis) itself.

• Spam Filters. We are trying to train a (Bayesian) Spam Filter. We start with a corpus with 2000
spam messages and 1000 real messages. We observe that the word “Congratulations” appears
in 100 spam messages, and 10 real messages. We also observe that the word “Account” appears
in 160 spam messages and 20 real messages. Assume you believe that any incoming email is
possible spam with probability 40%. What is the probability an incoming message is spam given
it contains the word “Congratulations”? What is the probability an incoming message is spam
given it contains the word “account”? What is the probability that the incoming message is
spam, given it contains both words “account” and “congratulations”? If we set a threshold of
90% to mark spam or not, in which of these cases would we mark spam.

Remark: I couldn’t cover this example in class. It is an interesting and informative exam-
ple. In fact, before moving ahead, please try it yourself.
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Consider an incoming email. Let S be the event that it is spam. The assumption we are
making is that Pr[S] = 0.4.
Let A be the event that the word “account” appears in the email. Let C be the event
that the word “congratulations” appears in the email. From the data, we deduce that in
a random spam message, the chances of seeing “congratulations” is 100

2000 = 0.05. Thus,
we conclude

Pr[C | S] = 0.05

Similarly, we conclude,

Pr[C | ¬S] = 10

1000
= 0.01

since ¬S implies a ‘real’ message. Also, we conclude

Pr[A | S] = 160

2000
= 0.08

and
Pr[A | ¬S] = 20

1000
= 0.02

Now, we can apply Bayes rule to get

Pr[S | A] = Pr[A | S] ·Pr[S]
Pr[A | S] ·Pr[S] +Pr[A | ¬S] ·Pr[¬S]

=
(0.08) · (0.4)

(0.08)(0.4) + (0.02)(0.6)

which computes to 0.727. That is, if we see the word “account” in an incoming mail, we
would believe the probability it is spam is around 72.7%. Thus, out spam-filter won’t
mark it spam.

Similarly, for “congratulations”, we get

Pr[S | C] = Pr[C | S] ·Pr[S]
Pr[C | S] ·Pr[S] +Pr[C | ¬S] ·Pr[¬S]

=
(0.05) · (0.4)

(0.05)(0.4) + (0.01)(0.6)

which computes to around 0.769. That is, if we see the word “account” in an incoming
mail, we would believe the probability it is spam is around 77%. The spam-filter won’t
mark this spam.

How do we solve the next question – when we see both “congratulations” and “ac-
count”. Well, we need to find

Pr[S | A ∩ C] = Pr[A ∩ C | S] ·Pr[S]
Pr[A ∩ C]

(1)

We don’t know how to calculate Pr[A ∩ C | S]. This is where (another) assumption,
called the Naive Bayes Assumption is made. In the setting of Spam Filters, it states that
the events A and S are conditionally independent on both spam (that is S) and real mes-
sages. What it says that it does recognize that the distribution of these words (“congrat-
ulations”, “account”) may not behave independently on the whole email corpus; but if
we focus our attention to the classes at hand, then it does. Again, this is an assumption,
which is actually made out there many time in the real world.
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Pr[A ∩ C | S] = Pr[A | S] ·Pr[C | S], Pr[A ∩ C | ¬S] = Pr[A | ¬S] ·Pr[C | ¬S]
(Naive Bayes)

Once we make it, then our calculations can start again. We get:

Pr[A ∩ C] = Pr[S] ·Pr[A ∩ C | S] +Pr[¬S] ·Pr[A ∩ C | ¬S]

and the RHS, with the Naive Bayes assumption, becomes

Pr[A ∩ C] = Pr[S] ·Pr[A | S] ·Pr[C | S] +Pr[¬S] ·Pr[A | ¬S] ·Pr[C | ¬S]

Substituting in the Bayes rule formula (1), we get

Pr[S | A ∩ C] = Pr[A | S] ·Pr[C | S] ·Pr[S]
Pr[S] ·Pr[A | S] ·Pr[C | S] +Pr[¬S] ·Pr[A | ¬S] ·Pr[C | ¬S]

which evaluates to

Pr[S | A ∩ C] = (0.05)(0.08)(0.4)

(0.05)(0.08)(0.4) + (0.02)(0.01)(0.6)
= 0.9302
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