
CS 30: Discrete Math in CS (Winter 2019): Lecture 25
Date: 22nd February, 2019 (Friday)

Topic: Probability: Independent Random Variables, Variance
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

1. Independent Random Variables. Two random variables X and Y are independent, if for
any x ∈ range(X) and any y ∈ range(Y ),

Pr[X = x, Y = y] = Pr[X = x] ·Pr[Y = y]

Examples:

• If we roll two dice, and X1 and X2 indicate the value of the rolls, then X1 and X2 are
independent.
• If we have two independent events A and B, then their indicator random variables 1A

and 1B are independent.
• Consider a random variable X taking value +1 if a toss of a coins is head, and −1 if its

tails. Such random variables are called Rademacher random variables. Suppose we toss
the coin twice and X1 and X2 are the corresponding random variables. Then X1 and
X2 are independent.

A set of k random variables X1, . . . , Xk are mutually independent if for any x1, x2, . . . , xk with
xi ∈ range(Xi), we have

Pr[Xi = xi, ∀1 ≤ i ≤ k] =
k∏

i=1

Pr[Xi = xi]

Theorem 1. If X and Y are two independent random variables, then

Exp[XY ] = Exp[X] ·Exp[Y ]

Proof.

Exp[XY ] =
∑

x∈range(x),y∈range(y)

(xy) ·Pr[X = x, Y = y] Definition of Expectation

=
∑

x∈range(x),y∈range(y)

(xy) ·Pr[X = x] ·Pr[Y = y] Independence

=

 ∑
x∈range(x)

x ·Pr[X = x]

 ·
 ∑

y∈range(y)

y ·Pr[Y = y]

 Algebra

= Exp[X] ·Exp[Y ] Definition of Expectation
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Of course, there is no need to stick to two random variables. The theorem easily generalizes
(do you see how?) to mutually independent random variables as follows.

Theorem 2. If X1, X2, . . . , Xk are mutually independent random variables, then

Exp

[
k∏

i=1

Xi

]
=

k∏
i=1

Exp [Xi]

Examples.

• Let Xi and Xj be two independent Rademacher random variables. Recall, Xi takes +1
with probability 1/2 and −1 with probability 1/2. Then note (a) Exp[Xi] = Exp[Xj ] =
0, (b) Exp[Xi · Xi] = Exp[Xj · Xj ] = 1, and (c) Exp[XiXj ] = Exp[Xi] · Exp[Xj ] = 0.
This is a very useful fact.
• Consider rolling a dice n times, independently. Let Z be the random variable indicating

the product of all the numbers seen. What is Exp[Z]? To solve this, let Xi be the roll of
the ith dice. We know that Exp[Xi] = 3.5 for all i. We also know X1, X2, . . . , Xn are all
independent random variables. Thus, Exp[Z] = (3.5)n.

2. Variance and Standard Deviation.

The expectation of a random variable is some sort of an “average behavior” of a random
variable. However, the true value of a random variable may be no where close to the ex-
pectation. For instance, consider a random variable which takes the value 10000 with prob-
ability 1/2, and −10000 with probability 1/2. What is Exp[X]? Yes, it is 0. Thus, there is
significant deviation of X from its expectation.

The variance and standard deviation try to capture this deviation. In particular, the variance
of a random variable is the expected value of the square of the deviation.

Theorem 3. Let X be a random variable. The variance of X is defined to be

Var[X] := Exp
[
(X −Exp[X])2

]
That is, if we define another random variable D := (X − Exp[X])2, then Var[X] is the
expected value of this new deviation random variable D.

The standard deviation σ(X) is defined to be
√
Var(X).

Theorem 4. Var[X] = Exp[X2]− (Exp[X])2.

Proof.

Var[X] = Exp[(X −Exp[X])2] = Exp[X2 − 2XExp[X] + (Exp[X])2]

Then, we apply linearity of expectation to get

Var[X] = Exp[X2]− 2Exp[X] ·Exp[X] + (Exp[X])2 = Exp[X2]− (Exp[X])2
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A useful corollary:

Theorem 5. For any random variable Exp[X2] ≥ (Exp[X])2.

Examples

• Roll of a die. Let X be the roll of a fair 6-sided die. We know that Exp[X] = 3.5. To
calculate the variance, we can use the deviation D := (X − Exp[X])2 = (X − 3.5)2.
Usinhg this, we get

Var[X] = Exp[D] =
1

6

(
(2.5)2 + (1.5)2 + (0.5)2 + (0.5)2 + (1.5)2 + (2.5)2

)
=

35

12

• Toss of a biased coin. Let X be a Bernoulli random variable taking value 1 if a coin tosses
heads, and 0 otherwise. Suppose the probability of heads was p. Recall, Exp[X] = p.
Also note since X is a indicator random variable, X2 = X . Thus, Exp[X2] = p as well.
We can calculate the variance as

Var[X] = Exp[X2]− (Exp[X])2 = p− p2 = p(1− p)

• Indicator Random Variable. Using the above toss of a biased coin example, we see that
for any event E , the variance of the indicator random variable is

Var[1E ] = Pr[E ] · (1−Pr[E ])

Theorem 6. If X is a random variable, and c is a “scalar” (a constant), then Z = c ·X is
another random variable. Var[c ·X] = c2 ·Var[X].

Proof.

Var[c ·X] = Exp[c2X2]− (Exp[cX])2 = c2Exp[X2]− c2 (Exp[X])2 = c·Var[X]

The next theorem is a linearity of variance result for independent random variables.

Theorem 7. For any two independent random variables X and Y , let Z := X +Y . Then,

Var[Z] = Var[X] +Var[Y ]

Proof.

Var[X + Y ] = Exp[(X + Y )2]− (Exp[X] +Exp[Y ])2

= Exp[X2 + 2XY + Y 2]−
(
Exp2[X]− 2Exp[X]Exp[Y ] +Exp2[Y ]

)
=
(
Exp[X2]−Exp2[X]

)
+
(
Exp[Y 2]−Exp2[Y ]

)
+ 2 (Exp[XY ]−Exp[X]Exp[Y ])

= Var[X] +Var[Y ]

In the last equality, due to independence, we get that 2 (Exp[XY ]−Exp[X]Exp[Y ]) = 0.
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We can generalize the above proof to many random variables. In particular, we can say
that if X1, X2, . . . , Xk are mutually independent random variables, then the variance of the
sum is the sum of the variances. However, we don’t need mutual independence. Pairwise
independence suffices. This is very important to note. The proof is given as a solution to the
UGP; perhaps you can try it. There is nothing more than the algebra above except there are
k things adding up.

Theorem 8. For any k pairwise independent random variables X1, X2, . . . , Xk,

Var

[
k∑

i=1

Xi

]
=

k∑
i=1

Var[Xi]

3. Deviation Inequalities

We have seen an example that Exp[X] may not be anywhere close to what values X can
take (recall the X = 10000 with 0.5 probability and −10000 with 0.5 probability). Deviation
inequalities try to put an upper bound on the probability that a random walk deviates too far
from the expectation.

The mother of all deviation inequalities is the following:

Theorem 9. (Markov’s Inequality)

Let X be a random variable whose range is non-negative reals. Then for any t > 0, we
have

Pr[X ≥ t] ≤ Exp[X]

t

Proof. By definition of expectation, we have

Exp[X] =
∑

x∈range(X)

x ·Pr[X = x] =
∑

0≤x<t

x ·Pr[X = x] +
∑
x≥t

x ·Pr[X = x]

The first summation
∑

0≤x<t x · Pr[X = x] ≥ 0. All terms are non-negative. The second
summation is

∑
x≥t x ·Pr[X = x] ≥ t ·

∑
x≥tPr[X = x] = t ·Pr[X ≥ t].

Putting it all together, we get
Exp[X] ≥ t ·Pr[X ≥ t]

which gives what we want by rearrangement.

Markov’s inequality only talks about non-negative random variables. Indeed, the example
in the beginning of this bullet point shows that it cannot be true for general random vari-
ables. This is where variance comes to play. The following is one of the most general forms
of deviation inequalities.
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Theorem 10. (Chebyshev’s Inequality)

Let X be a random variable. Then for any t > 0, we have

Pr[|X −Exp[X]| ≥ t] ≤ Var[X]

t2

Proof. We first note that

Pr[|X −Exp[X]| ≥ t] = Pr[(X −Exp[X])2 ≥ t2]

Then we notice that D := (X − Exp[X])2 is a non-negative random variable, and therefore
we can apply Markov’s inequality on it to get

Pr[|X −Exp[X]| ≥ t] = Pr[D ≥ t2] ≤ Exp[D]

t2
=

Var[X]

t2

5


