CS 30: Discrete Math in CS (Winter 2019): Lecture 27
Date: 27th February, 2019 (Wednesday)
Topic: Graphs: Connectivity, Trees
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.
Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

1. Perambulations in Graphs. We introduce a lot of definitions involving alternating sequence
of vertices and edges. These are key definitions so make sure you understand them. Through-
out below we fix a graph G = (V, E).

o A walk win G is an alternating sequence of vertices and edges
w = (vo, €1,01,€2,02, ..., €k, Vk)

such that the ith edge ¢; = (vi—1,v;) for 1 < i < k. Intuitively, imagine starting at
vertex vy, using the edge e; to go to the adjacent vertex v1, and then using es to go to
the adjacent (to v;) vertex vy, and so on and so forth till we reach v;. Note, by this
constraint above the identity of the edges are defined by the vertices, and so telling
them explicitly is redundant. Nevertheless, when talking about a walk, one explicitly
writes down the edges.

Note both the edges and vertices could repeat themselves. That is e; could be the same
as ej for j # i. In fact, ;41 could be the same as e;; this would mean going from one
endpoint of e; to the other and immediately returning back.

The walk above is said to start at vg and end at vy. The node vy is often called the
source/origin and the node vy, is often called the sink/destination. If there is a walk as
described above, then we often say “there is a walk from vy to vy.”

A walk is of length k if there are k edges in the sequence. Note that since repetition of
both vertices and edges are allowed, walks could go on for ever.

e A trail t in G is a walk with no edges repeating. That is, a trail is also an alternating
sequence of vertices and edges

t = (vo,e1,v1,€2,09,...,6ex,v;) where the e;’s are distinct

Note that a trail could repeat vertices. For instance, if the graph was
G = ({a,b,c,d, e}, {(a,b), (b, c),(c,d), (d,b), (b,e)}), then the following is a valid trail.
The vertex b is repeated.

t = (a, (a,b), b, (b,c), ¢, (c,d), d, (d,b), b, (b,e), €)

Also note that a trail cannot be arbitrarily long. A trail’s length is at most | E£|.

e A path p in a graph G is a walk with no vertices repeated. Note that a path is always
a trail. In fact, a path is a trail with no vertices repeating. Oftentimes, for describing
paths, the alternating edges are dropped. So for instance

p = (vo,v1, ..., v;) actually stands for (vo, (vo,v1), v1, (v1,v2), V2, -, (Vk—1, V%), Uk)
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e A closed walk is a walk whose origin and destination are the same vertex. If e = (u,v)
is an edge in G, then the following is a closed walk of length 2

w = (u,e,v,e,u)

A closed walk must be of length at least 2.

Note that given a closed walk, we can choose any v; € w to be the source and the
destination using the same vertices and eges of the closed walk. That is, given a closed
walk

w = (vg, €1,v1,€2,V2,...,€ek,v;) With v = v

and an arbitrary vertex v; € w with 1 < i < k, we can have another closed walk
/
w = (Uia €i+1, Vi+1,...,€k, Vg = Vo, €1,V1,€2,V2,..., €i>vi)

Note v’ is a closed walk whose source and destination are v;.

e A circuit is a closed trail of length at least 1. That is, it is a trail whose origin and
destination are the same vertex, and contains at least one edge. The latter constraint
disallows a singleton node from being defined as a circuit. Indeed, a circuit must have
at least 3 edges — do you see this?

e A cycleis a circuit with no vertex other than the source and destination repeating. Thus,
a cycle is a path followed by an edge from the destination of the path to the origin, and
then the origin node.

Theorem 1. Let G = (V, E) be a graph and u and v be two distinct vertices in V(G). If
there is a finite walk from u to v in G, then there is a path from u to v.

Proof. In the UGP, you see a way to prove the above by induction. There is another (slicker)

way of looking at the inductive proof. It involves the “minimal counter example” idea. Goes
like this.

Let W be the set of all walks from u to v. We know that there is one of finite length. Pick
w € W to be the walk from u to v of the smallest length. We claim that this walk must be a
path.

Suppose not. Suppose w is not a path. That is,
w= (Lo :=U,€1,T1,...,E% Tk =)

but two vertices, say z; and z; with i < j and both 0 < 7, j < k, are the same. Then, consider
the walk

w = (930 = U, €1, Xy €41, gy e ,ek,l’k)
This walk w' is a smaller length walk than w. But this contradicts the choice of w. Thus, our
supposition must be wrong. Therefore, w is a path.

O



Theorem 2. Let G = (V, E) and u be an arbitrary vertex in V(G) and e be an arbitrary
vertex in E(G). If there is a circuit in G containing u, then there is a cycle in G containing
u. If there is a circuit in G containing e, then there is a cycle in G containing e.

2. Connectivity in Graphs

In a graph G = (V, E), we say a vertex v is reachable from w if there is a path starting from v
and ending at u.

A graph G = (V, E) is connected if any vertex u is reachable from another vertex v. A graph
is disconnected otherwise.

Given any graph G = (V, E), we can partition it into connected components. Thatis, V =
ViU Vo U--- UV, where (a) any two vertices in the same V; are reachable from one another,
and (b) a vertex u € V; is not reachable from any vertex v € V; if 7 # j.

Given any graph G = (V,E) and a vertex u € V, the set of vertices S, C V which are
reachable from wu is the connected componenet of G which contains w.

3. Trees.
A graph G = (V, E) is a forest if it doesn’t contain any cycles.

A forest G = (V, E) is a tree if it is connected. That is, a tree G = (V, E) is a connected graph
which doesn’t contain any cycles.

Theorem 3. Let G = (V, E) be a forest. Then each connected component of G induces a
tree.

Proof. Let V1, ...,V be the connected components of G. Each G[V;] is connected by defini-
tion. If G doesn’t contain a cycle, then any subgraph also doesn’t contain a cycle. Thus, G[V}]
contains no cycle. Thus G[V;] is a tree. O

There are many equivalent ways to think about trees. We prove some here, and some are left
as exercises in the UGP.

Theorem 4. (The Tree Theorem.) Let G = (V, E) be a graph. The following are equiva-
lent statements.

(a) G is a tree.

(b) G has no cycles and adding any edge to G creates a cycle.

(c) Between any two vertices in G there is a unique path.

(d) G is connected, and deleting any edge from G disconnects the graph, and the re-
sulting graph has exactly two connected components.

(e) Gisconnected and |E| = |V|— 1.
(f) Ghasnocyclesand |E| = |V|— 1.



Proof.

(a) = (b): Since G is a tree, G doesn’t contain any cycle. Suppose we add an edge (u,v) ¢ E
to G. Note, there is a path from v to v in G since G is connected. Then in the graph H :=
G + (u,v), there is a cycle which starts from v, follows the path to u, and then returns to v
using the new edge (u, v).

(b) = (c): Fix any two vertices v and v in G. Since G has no cycles, there cannot be two or
more than two paths in G from u to v. (This is established in the UGP). We now show it has
one path from u to v. If the (u,v) € E, this is the length 1 path. Otherwise, since G + (u, v)
forms a cycle and G had no cycles, this cycle must contain the edge (u,v). Deleting (u,v)
from this cycle leads to a path from u to v. More precisely, given the cycle containing (u, v),
I could write it as a closed walk where the starting and ending vertex is u. Either the second
or the penultimate vertex must be v. Deleting (u,v) would give a walk from v to u or from u
to v. In either case, we would have a path from « to v.

(¢) = (d). UGP

(d) = (e). We prove this by induction. Let P(n) be true if “for all graphs G = (V, E) with
|V| = n which are (a) connected, and (b) deleting any edge e from G disconnects G and leads
to exactly two connected components, must have |E| = [V| — 1.7

Base Case: Is P(1) true? There is only graph with 1 vertex. It has |E| = 0 = 1 — 1. Thus,
P(1) is vacuously true.

Inductive Case: Fix a natural number k and assume P(1), P(2),..., P(k) is true. We wish to
prove P(k+1) is true. To this end, we fix a graph G = (V, E) with |V | = k + 1 which satisfies
the condition (d). Fix any edge (u,v) € G. (d) implies that G — (u, v) has two connected
components V; and V5. Consider the two induced subgraphs of G, namely, G; = G[V;] and
G2 = G[V;]. Note that for both these graphs (a) they are connected, and (b) deleting any
edge disconnects the graph into two connected components. Furthermore, |V;| and |V5| are
both < k. Thus, by strong induction, |E(G1)| = |Vi| — 1 and |E(G2)| = |Va| — 1. Thus,
[E(G)| = [E(GY)] + [E(Ga)| + 1= [Vi| + [Vo| =1 = [V| - L.

(e) = (f): Before we prove this, we make an important observation. Since ) - deg(v) =
2|E| and since |E| = |V| — 1, we get that there exist some v € V with deg(v) < 2. If every
deg(v) > 2, then the LHS is > 2|V|. Furthermore, since G is connected, there can’t be any
isolated vertices. Thus, deg(v) > 1 for all v. Together, we can conclude there must exist a
vertex in G with deg(v) = 1. This is called a leaf of the tree.

We now prove G = (V, E) has no cycles by induction. I am going to sketch the proof; I expect
by now you to be comfortable enough to write the whole formal proof using predicates and
all.

Since G = (V, E) has a leaf, let’s call it v. Consider G’ = G — v. Note, |[E(G")| = |E(G)| -1 =
[V(G)| — 2 = |V(G")| — 1. Furthermore, G’ is connected. For any z,y € V(G’), there was a
path from z to y in G. This path couldn’t have contained v since deg(v) = 1. Thus, this
path also exists in G’, implying G’ is connected. Thus, by induction, G’ doesn’t have any
cycles. This means G doesn’t have any cycles since deg(v) = 1 implies v can’t introduce
new cycles.



(f) = (a): UGP O

Theorem 5. Let G = (V, E) be a forest with k connected components. Then |E(G)| =
V(G)| — k.

Proof. Let V,. ..,V be the connected components of G = (V, E). We know that each G; :=
G[Vi]isa tree. Thus, |E(Gy)| = |V (Gi)|—1. Thus, |[E(G)| = S5, |E(Gy)| = (zj;l |V(Gi)]> -
k=|V(G)| — k. O



