
CS 30: Discrete Math in CS (Winter 2019): Lecture 27
Date: 27th February, 2019 (Wednesday)

Topic: Graphs: Connectivity, Trees
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

1. Perambulations in Graphs. We introduce a lot of definitions involving alternating sequence
of vertices and edges. These are key definitions so make sure you understand them. Through-
out below we fix a graph G = (V,E).

• A walk w in G is an alternating sequence of vertices and edges

w = (v0, e1, v1, e2, v2, . . . , ek, vk)

such that the ith edge ei = (vi−1, vi) for 1 ≤ i ≤ k. Intuitively, imagine starting at
vertex v0, using the edge e1 to go to the adjacent vertex v1, and then using e2 to go to
the adjacent (to v1) vertex v2, and so on and so forth till we reach vk. Note, by this
constraint above the identity of the edges are defined by the vertices, and so telling
them explicitly is redundant. Nevertheless, when talking about a walk, one explicitly
writes down the edges.
Note both the edges and vertices could repeat themselves. That is ei could be the same
as ej for j 6= i. In fact, ei+1 could be the same as ei; this would mean going from one
endpoint of ei to the other and immediately returning back.
The walk above is said to start at v0 and end at vk. The node v0 is often called the
source/origin and the node vk is often called the sink/destination. If there is a walk as
described above, then we often say “there is a walk from v0 to vk.”
A walk is of length k if there are k edges in the sequence. Note that since repetition of
both vertices and edges are allowed, walks could go on for ever.

• A trail t in G is a walk with no edges repeating. That is, a trail is also an alternating
sequence of vertices and edges

t = (v0, e1, v1, e2, v2, . . . , ek, vk) where the ei’s are distinct

Note that a trail could repeat vertices. For instance, if the graph was
G = ({a, b, c, d, e}, {(a, b), (b, c), (c, d), (d, b), (b, e)}), then the following is a valid trail.
The vertex b is repeated.

t = (a, (a, b), b, (b, c), c, (c, d), d, (d, b), b, (b, e), e)

Also note that a trail cannot be arbitrarily long. A trail’s length is at most |E|.
• A path p in a graph G is a walk with no vertices repeated. Note that a path is always

a trail. In fact, a path is a trail with no vertices repeating. Oftentimes, for describing
paths, the alternating edges are dropped. So for instance

p = (v0, v1, . . . , vk) actually stands for (v0, (v0, v1), v1, (v1, v2), v2, · · · , (vk−1, vk), vk)
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• A closed walk is a walk whose origin and destination are the same vertex. If e = (u, v)
is an edge in G, then the following is a closed walk of length 2

w = (u, e, v, e, u)

A closed walk must be of length at least 2.
Note that given a closed walk, we can choose any vi ∈ w to be the source and the
destination using the same vertices and eges of the closed walk. That is, given a closed
walk

w = (v0, e1, v1, e2, v2, . . . , ek, vk) with vk = v0

and an arbitrary vertex vi ∈ w with 1 ≤ i < k, we can have another closed walk

w′ = (vi, ei+1, vi+1, . . . , ek, vk = v0, e1, v1, e2, v2, . . . , ei, vi)

Note w′ is a closed walk whose source and destination are vi.

• A circuit is a closed trail of length at least 1. That is, it is a trail whose origin and
destination are the same vertex, and contains at least one edge. The latter constraint
disallows a singleton node from being defined as a circuit. Indeed, a circuit must have
at least 3 edges – do you see this?

• A cycle is a circuit with no vertex other than the source and destination repeating. Thus,
a cycle is a path followed by an edge from the destination of the path to the origin, and
then the origin node.

Theorem 1. Let G = (V,E) be a graph and u and v be two distinct vertices in V (G). If
there is a finite walk from u to v in G, then there is a path from u to v.

Proof. In the UGP, you see a way to prove the above by induction. There is another (slicker)
way of looking at the inductive proof. It involves the “minimal counter example” idea. Goes
like this.

Let W be the set of all walks from u to v. We know that there is one of finite length. Pick
w ∈ W to be the walk from u to v of the smallest length. We claim that this walk must be a
path.

Suppose not. Suppose w is not a path. That is,

w = (x0 := u, e1, x1, . . . , ek, xk := v)

but two vertices, say xi and xj with i < j and both 0 ≤ i, j ≤ k, are the same. Then, consider
the walk

w′ = (x0 := u, e1, x1, . . . , xi, ej+1, xj+1, . . . , ek, xk)

This walk w′ is a smaller length walk than w. But this contradicts the choice of w. Thus, our
supposition must be wrong. Therefore, w is a path.
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Theorem 2. Let G = (V,E) and u be an arbitrary vertex in V (G) and e be an arbitrary
vertex in E(G). If there is a circuit in G containing u, then there is a cycle in G containing
u. If there is a circuit in G containing e, then there is a cycle in G containing e.

2. Connectivity in Graphs

In a graph G = (V,E), we say a vertex v is reachable from u if there is a path starting from v
and ending at u.

A graph G = (V,E) is connected if any vertex u is reachable from another vertex v. A graph
is disconnected otherwise.

Given any graph G = (V,E), we can partition it into connected components. That is, V =
V1 ∪ V2 ∪ · · · ∪ Vk where (a) any two vertices in the same Vi are reachable from one another,
and (b) a vertex u ∈ Vi is not reachable from any vertex v ∈ Vj if i 6= j.

Given any graph G = (V,E) and a vertex u ∈ V , the set of vertices Su ⊆ V which are
reachable from u is the connected componenet of G which contains u.

3. Trees.

A graph G = (V,E) is a forest if it doesn’t contain any cycles.

A forest G = (V,E) is a tree if it is connected. That is, a tree G = (V,E) is a connected graph
which doesn’t contain any cycles.

Theorem 3. Let G = (V,E) be a forest. Then each connected component of G induces a
tree.

Proof. Let V1, . . . , Vk be the connected components of G. Each G[Vi] is connected by defini-
tion. If G doesn’t contain a cycle, then any subgraph also doesn’t contain a cycle. Thus, G[Vi]
contains no cycle. Thus G[Vi] is a tree.

There are many equivalent ways to think about trees. We prove some here, and some are left
as exercises in the UGP.

Theorem 4. (The Tree Theorem.) Let G = (V,E) be a graph. The following are equiva-
lent statements.

(a) G is a tree.

(b) G has no cycles and adding any edge to G creates a cycle.

(c) Between any two vertices in G there is a unique path.

(d) G is connected, and deleting any edge from G disconnects the graph, and the re-
sulting graph has exactly two connected components.

(e) G is connected and |E| = |V | − 1.

(f) G has no cycles and |E| = |V | − 1.
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Proof.

(a)⇒ (b): Since G is a tree, G doesn’t contain any cycle. Suppose we add an edge (u, v) /∈ E
to G. Note, there is a path from v to u in G since G is connected. Then in the graph H :=
G + (u, v), there is a cycle which starts from v, follows the path to u, and then returns to v
using the new edge (u, v).

(b)⇒ (c): Fix any two vertices u and v in G. Since G has no cycles, there cannot be two or
more than two paths in G from u to v. (This is established in the UGP). We now show it has
one path from u to v. If the (u, v) ∈ E, this is the length 1 path. Otherwise, since G + (u, v)
forms a cycle and G had no cycles, this cycle must contain the edge (u, v). Deleting (u, v)
from this cycle leads to a path from u to v. More precisely, given the cycle containing (u, v),
I could write it as a closed walk where the starting and ending vertex is u. Either the second
or the penultimate vertex must be v. Deleting (u, v) would give a walk from v to u or from u
to v. In either case, we would have a path from u to v.

(c)⇒ (d). UGP

(d)⇒ (e). We prove this by induction. Let P (n) be true if “for all graphs G = (V,E) with
|V | = n which are (a) connected, and (b) deleting any edge e from G disconnects G and leads
to exactly two connected components, must have |E| = |V | − 1.”

Base Case: Is P (1) true? There is only graph with 1 vertex. It has |E| = 0 = 1 − 1. Thus,
P (1) is vacuously true.

Inductive Case: Fix a natural number k and assume P (1), P (2), . . . , P (k) is true. We wish to
prove P (k+1) is true. To this end, we fix a graph G = (V,E) with |V | = k+1 which satisfies
the condition (d). Fix any edge (u, v) ∈ G. (d) implies that G − (u, v) has two connected
components V1 and V2. Consider the two induced subgraphs of G, namely, G1 = G[V1] and
G2 = G[V2]. Note that for both these graphs (a) they are connected, and (b) deleting any
edge disconnects the graph into two connected components. Furthermore, |V1| and |V2| are
both ≤ k. Thus, by strong induction, |E(G1)| = |V1| − 1 and |E(G2)| = |V2| − 1. Thus,
|E(G)| = |E(G1)|+ |E(G2)|+ 1 = |V1|+ |V2| − 1 = |V | − 1.

(e)⇒ (f): Before we prove this, we make an important observation. Since
∑

v∈V deg(v) =
2|E| and since |E| = |V | − 1, we get that there exist some v ∈ V with deg(v) < 2. If every
deg(v) ≥ 2, then the LHS is ≥ 2|V |. Furthermore, since G is connected, there can’t be any
isolated vertices. Thus, deg(v) ≥ 1 for all v. Together, we can conclude there must exist a
vertex in G with deg(v) = 1. This is called a leaf of the tree.

We now prove G = (V,E) has no cycles by induction. I am going to sketch the proof; I expect
by now you to be comfortable enough to write the whole formal proof using predicates and
all.

Since G = (V,E) has a leaf, let’s call it v. Consider G′ = G− v. Note, |E(G′)| = |E(G)| − 1 =
|V (G)| − 2 = |V (G′)| − 1. Furthermore, G′ is connected. For any x, y ∈ V (G′), there was a
path from x to y in G. This path couldn’t have contained v since degG(v) = 1. Thus, this
path also exists in G′, implying G′ is connected. Thus, by induction, G′ doesn’t have any
cycles. This means G doesn’t have any cycles since degG(v) = 1 implies v can’t introduce
new cycles.
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(f)⇒ (a): UGP

Theorem 5. Let G = (V,E) be a forest with k connected components. Then |E(G)| =
|V (G)| − k.

Proof. Let V1, . . . , Vk be the connected components of G = (V,E). We know that each Gi :=

G[Vi] is a tree. Thus, |E(Gi)| = |V (Gi)|−1. Thus, |E(G)| =
∑k

i=1 |E(Gi)| =
(∑k

i=1 |V (Gi)|
)
−

k = |V (G)| − k.
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