CS 30: Discrete Math in CS (Winter 2019): Lecture 2 Supplement

Date: 4th January, 2019 (Fri) Topic: More examples of Proofs by Contradiction Disclaimer: These notes have not gone through scrutiny and in all probability contain errors. Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

This material was not covered in class but supplements the stuff that was covered. Think of this material as what I would've covered if I had a semester instead of a quarter.

• Logarithms in different bases.

Theorem 1. $\log_2 3$ is irrational.

Proof.

- 1. For the sake of contradiction, assume $\log_2 3$ is rational.
- 2. Then there exists integers *a* and *b* such that $\log_2 3 = \frac{a}{b}$.
- 3. That is, $b \log_2 3 = a$.
- 4. Which implies $\log_2(3^b) = a$.
- 5. That is, $3^b = 2^a$.
- 6. But this is a contradiction since the LHS is odd while the RHS is even.

	ß
Exercise: Is $\log_{\sqrt{2}} 3$ rational or irratonal?	
	ø
Exercise: Can you now figure out two irrational numbers x and y such that x^y is rational?	