
CS 30: Discrete Math in CS (Winter 2019): Lecture 3
Date: 7th January, 2019 (Monday)

Topic: Sets and Functions
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

1 Sets

• Definition. A set is an unordered collection of objects. These objects are called elements of the
set. These elements could be anything, for instance, the element of a set could be a number,
could be a string, could be tuples of numbers, and in fact can be other sets!

• ∈ notation. An element x of S is said to satisfy x ∈ S. If x is not an element of S, we denote
it as x /∈ S.

• How to describe a set? A set is described either by explicitly writing down the elements,
such as

S = {1, 3, 5, 7, 9} or T = {apple, banana, volcano, 100}

This is called the roster notation.

Or, a set is described implicitly by stating some rule which the elements follow, such as

S = {n : n is an odd number less than 10} or W = {x2 : x is an integer and 1 ≤ x ≤ 5}

This is called the set-builder notation.

The sets S described in the above two examples correspond to the same set. The set W ,
written explicitly in the roster notation, looks like W = {1, 4, 9, 16, 25}.

Remark: Caution: Unless otherwise explicitly mentioned, duplicate items are removed from a
set. For example, consider the set A = {x2 : −2 ≤ x ≤ 2} in the set-builder notation. In the
roster notation, this set is {0, 1, 4} and not {4, 1, 0, 1, 4}. Sometimes one may allow duplicates,
but in that case the set will be explicitly called a multiset.

• Cardinality of a set. The cardinality of a set S is denoted as |S| is the number of elements in
the set. For example if A = {apple, banana, avocado}, then |A| = 3. b

Exercise: What is |A| when A = {x2 : −3 ≤ x ≤ 3}?

If the set S has only finitely many elements, then |S| is a finite number, and S is called a finite
set.

|S| could be∞ in which case the set is called an infinite set.

• Famous examples of Infinite Sets. N, the set of all natural numbers; Z, the set of all integers;
Q, the set of all rational numbers, R, the set of all real numbers; and P , the set of all computer
programs written in Python.
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• Empty Set. There is only one set which contains no elements and that set is called the empty
set. It is denoted as ∅ or {}.

• Subsets and Supersets. A subset P of a set S is another set such that every element of P is
an element of S. In that case, the notation used is P ⊂ S. In case P is a subset and not equal
to S, it is called a proper subset. It is denoted as P ( S.

For example, if A = {1, 2, 3} and B = {1, 2}, then B ⊂ A.

Remark: For any set A, the set A itself is also a subset of A. That is, A ⊂ A. It is not a proper
subset.

Remark: The empty set ∅ is a subset of any set.

b

Exercise: Write down all subsets of the sets S = {1, 2}, T = {1, 2, 3} and U = {1, 2, 3, 4}. Do
you see a pattern in the number of subsets?

If A ⊂ B, then B is called a superset of A. This is denoted as B ⊃ A.

• Set Operations.

– Union. Given two sets A and B, the union A∪B is the set containing all elements which
are either in A, or in B, or both. For example, if

A = {1, 3, 4, 7, 10} and B = {2, 4, 7, 9, 10}, then A ∪B = {1, 2, 3, 4, 7, 9, 10}

b

Exercise: Can there be sets A and B such that |A ∪B| > |A|+ |B|?

– Intersection. Given two sets A and B, the intersection A ∩ B is the set containing all
elements which are in both in A and in B. For example, if

A = {1, 3, 4, 7, 10} and B = {2, 4, 7, 9, 10}, then A ∩B = {4, 7, 10}

Two sets A and B are called disjoint if A ∩B = ∅.

Theorem 1. If A and B are two disjoint finite sets, then |A ∪B| = |A|+ |B|.

Proof. We will give a computer-sciency proof of the above theorem. Consider maintain-
ing three counters CA∪B , CA and CB . Initially all counters are set to 0. Next, we run the
following code. We consider the elements of A ∪ B in a list (say), and then we iterate
over the elements e in this list. For each element e we do the following:

1. We increment CA∪B by 1.
2. If e ∈ A: we increment CA by 1.
3. If e ∈ B: we increment CB by 1.
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Step 1 implies that at the end of the for-loop, CA∪B will be set to |A ∪ B|. Since A and
B are disjoint, no element e is in both A and B. Furthermore, every element e ∈ A ∪ B
has to be in either A or B. Therefore, in every iteration of the for-loop exactly one of CA

or CB is incremented. Therefore, at the end of the for-loop, CA + CB = CA∪B .
Finally, we assert that CA = |A| and CB = |B|. To see the former, note that

1. We never increment CA unless we see an element of A,
2. We never see the same element e of A twice since A ∪B has distinct elements, and
3. Every element of A is seen in the for-loop since every element of A is also in A∪B.

(1) and (2) imply CA ≤ |A|, and (3) implies CA ≥ |A|. Thus, we get CA = |A|.
We can apply exactly the same argument for CB and B (you should try it without looking
at the notes above) to get CB = |B|. The proof now follows since

|A ∪B| = CA∪B = CA + CB = |A|+ |B|.

Remark: Please note the subtleties involved in proving CA = |A|. To appreciate this,
consider looping over a multiset with duplicates or over some other subset C.

– Difference. Given two sets A and B, the set difference A \ B are all the elements in A
which are not in B and B \A are the elements in B which are not in A. For example, if

A = {1, 3, 4, 7, 10} and B = {2, 4, 7, 9, 10}, then A \B = {1, 3} and B \A = {2, 9}

b

Exercise:Is A \B = B \A? Can they ever be equal?

Remark: A couple of useful observations:

1. A and B \A are disjoint since B \A doesn’t contain elements of A.
2. In particular, this implies (A ∩B) and B \A are disjoint since A ∩B ⊆ A.
3. A ∪ (B \ A) = A ∪ B. This is because every element of A ∪ B is either in A, and if

not in A, must be in B \A.
4. (A ∩ B) ∪ (B \ A) = B. This is because every element of B is either in A (in which

case it is in A ∩B) or in B \A.

Theorem 2 (Inclusion-Exclusion (baby version)). For any two finite sets A and B,
we have

|A ∪B| = |A|+ |B| − |A ∩B|

Proof. Since A ∪ B = A ∪ (B \ A) and since A and B \ A are disjoint, from Theorem 1
we get

|A ∪B| = |A|+ |B \A| (1)
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Since B = (A∩B)∪ (B \A) and since (A∩B) and B \A) are disjoint, from Theorem 1
we get

|B| = |A ∩B|+ |B \A| (2)

Subtracting (2) from (1), we get

|A ∪B| − |B| = |A| − |A ∩B|

The theorem follows by taking |B| to the other side.

– Cartesian Product Given two sets A and B, the Cartesian product A×B is another set C
whose elements are tuples of the form (a, b) where a ∈ A and b ∈ B. That is, A × B :=
{(a, b) : a ∈ A and b ∈ B}. For example, if

A = {1, 3} and B = {2, 4, 7}, thenA×B = {(1, 2), (1, 4), (1, 7), (3, 2), (3, 4), (3, 7)}

b

Exercise: If |A| = a and |B| = b, then what is |A×B|?
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