CS 30: Discrete Math in CS (Winter 2019): Lecture 5
Date: 10th January, 2019 (X-Hour)
Topic: More on Countable Sets
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.
Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

1 Countable Sets

We reviewed the definition from yesterday.
e Closed under Union.

Theorem 1. Given two disjoint countable sets A and B, the set A U B is countable.

Proof. Since A is countable, there is a valid, injective function f : A — N. Since B is count-
able, there is a valid, injective function g : B — N. We need to show AU B is countable. That
is, we need to describe a valid, injective function 2 : AU B — N. We do so as follows.

2f(x) ifreA

Forz € AUB, h(z):= .
29(x)+1 ifxeB

Note since we assume A and B are disjoint, exactly one of the two cases occur. Furthermore,
since f and g maps to natural numbers, the function / also maps to natural numbers. Thus,
the definition of A is valid.

Claim 1. h : AU B — Nis injective.

Proof. Pick x,y € AU B such that z # y. We need to show h(z) # h(y). There are three cases
to consider

- Case1: x € A,y € A: In this case h(z) — h(y) = 2(f(z) — f(y)) # Osince f : A — Nis

injective.

— Case 2: x € B,y € B: In this case h(z) — h(y) = 2(g9(x) — g(y)) # Osince g : B — Nis
injective.

— Case 3: x € A,y € B: In this case h(z) is even while h(y) is odd, and therefore h(z) #
h(y)-

Note we don’t have to look at the case x € B,y € A separately (although it is just one other
short line) since we could assume, without loss of generality, that z € A,y € B if they lie in
different sets. Otherwise we change their names. O

O



Remark: If the above proof looks eerily similar to the proof we did for countability of integers,
that is not an accident. The set of integers is the disjoint union of positive numbers (natural
numbers), the negative numbers, and the extra 0. If we ignore the O for a moment, then it is
indeed the disjoint union of two clearly countable sets.

Remark: The above proof really doesn’t use disjointness crucially. If A and B were not disjoint,
we could define h(x) = 2f(x) if v € A, and h(x) = 2g(x) + 1 if z € B\ A. Alternately, we
could use the fact that AU B is the disjoint union of A and B \ A.

Remark: We can use the above argument repetitively to show, for instance, the union of three
countable sets is countable, and indeed, the union of 1010 sets is countable. However, the above
does not imply that if we have infinitely many countable sets Ay, Aa, Az, ..., then | J, oy An s
countable.

To appreciate this, note that the sum of two rational numbers is rational, and indeed the sum of
any finite collection of rational numbers is not necessarily rational. Indeed, any irrational
number (take your favorite one) has a non-recurring decimal representation and is thus a sum
of infinite rational numbers. For instance,

I I OIS I R
"= 1710 " 100 " 1000 T 10000 100000

e The Set of Rationals is Countable. This may be a surprise since the set of rationals are
dense, that is, between any two rational numbers, there is a rational number. Nevertheless,
they are countable.

To show this, we need to construct an injection g : Q@ — N. For now, we only show an
injection of g : Q — N where Q. are all the positive rationals; we leave the extension to the
full set of rationals as an exercise.

This can be defined as follows: given any positive rational number z = p/q in the reduced
form (thatis, ged(p, q) = 1), define g(z) = 2P39. Clearly, the functions maps a positive rational
number to a positive integer.

Claim 2. The above function g : Q — N is injective.
Proof. To see this, pick two different positive rationals = p/q and y = r/s such that z # y.

We need to prove g(x) # g(y). To this end, consider the ratio

g(z) _2p3e 2p 1)
gly) 2735 3¢

Since x # y, we have p # r, or ¢ # s, or both. If p = r, then the RHS of (1) is either 1
divided by a positive power of 3, or is a positive power of 3. In neither case, can the RHS be



1. Similarly, if ¢ = s, then the RHS of (1) is either a positive power of 2, or 1 divided by a
positive power of 2. In neither case can the RHS be 1.
If p # r and g # s, then the RHS of (1) is either a positive power of 2 divided by a positive
power of 3, or 1 divided by a positive power of 2 times a positive power of 3, or reciprocals
of these. In none of the these cases, can it equate to 1.

In sum, % # 1. Implying g(z) # g(y). -

Exercise: Extend the above proof to give an injection g : Q — N. Hint: use the fact that the
union of two countable sets is countable.

Exercise: What ordering of the (positive) rationals does the above give using the algorithm for
getting ordering from the injective function? Order the first 7 rationals.
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