
CS 30: Discrete Math in CS (Winter 2019): Lecture 8
Date: 16th January, 2019 (Wednesday)
Topic: GCD and Euclid’s Algorithm

Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.
Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

1. GCD and co-prime numbers. The greatest common divisor g = gcd(a, b) of two positive
integers a and b is the largest integer g such that g perfectly divides both a and b. That
is, g ≡ 0 mod a and g ≡ 0 mod b. Two numbers a and b are relatively prime or co-prime if
gcd(a, b) = 1.

2. Key Property of GCD.

Theorem 1 (GCD property). Given any two positive numbers a, b with say b ≤ a, let r
be the remainder upon dividing a by b. That is, a = bq + r for some 0 ≤ r < b. If r = 0,
then gcd(a, b) = b. Otherwise, gcd(a, b) = gcd(b, r).

Proof. If r = 0 then b divides a, b clearly divides b, and there is no larger number that divides
b. Thus, gcd(a, b) = b.

Otherwise, let g = gcd(a, b) and h = gcd(b, r). Since g divides a and g divides bq, we get g
divides r = a − bq. Thus, gcd(b, r) ≥ g since the GCD is the largest integer dividing both b
and r. Since h divides b and h divides r, h divides a = bq + r. Thus, gcd(a, b) ≥ h. Thus,
g = h.

3. Euclid’s Recursive Algorithm for GCD. The above fact can be used to obtain the GCD of a
and b.

1: procedure GCD(a, b) . Assume a ≥ b.
2: . Returns the GCD of a and b.
3: Divide a by b to get a = bq + r.
4: if r = 0 then:
5: return b
6: else:
7: return GCD(b, r)

b

Exercise: Why does the above algorithm terminate?

4. Certificate of GCD. Here is another way of looking at GCDs. g = gcd(a, b) is the smallest
positive number g which can be expressed as an integer combination of a and b, that is, g can
be written as g = xa+ yb where x and y are integers, and no smaller positive number can be
expressed thus.
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Theorem 2. For any two positive numbers a and b, the GCD g := gcd(a, b) is the smallest,
positive integer which can be expressed as an integer linear combination of a and b. That is,

gcd(a, b) = min {xa+ yb : x ∈ Z, y ∈ Z, and xa+ yb > 0} (1)

Proof.

• One direction is easy. We first show that for any two integers x, y such that xa+ yb > 0,
we must have xa+ yb ≥ g. Indeed, let us call the number xa+ yb = n. Since g divides
both a and b, g must divide n. Thus, n = gq for some integer q. However, n > 0 and
g > 0, which implies q > 0. Since q is integer, we must have q ≥ 1 implying n = gq ≥ g.

• The more interesting direction is to show that there indeed exists integers x and y such
that xa+yb = g. Indeed, for the sake of contradiction, suppose this is not the case. That
is, there exist some “bad” pair of positive numbers a and b such that no matter which
integers x and y we choose, xa+ yb 6= g

• Minimal Counterexample Idea. Now we use another very nice proof idea which we will
build upon a lot in a couple of weeks. Among all such “bad” pairs of numbers (a, b),
let us pick the pair which has the smallest sum (a+ b). Why is this well defined? Well, for
any bad pair the sum a+ b is a positive number (in fact ≥ 2); if we “sort” the bad pairs
in increasing order of sum (breaking ties arbitrarily), then we pick the first such pair.

• Now, suppose a ≥ b (without loss of generality). Let (q, r) be such that a = bq + r and
0 ≤ r < b. Note that if r = 0, then gcd(a, b) = b and b = 0 ·a+1 · b implying (a, b) cannot
be bad. So, 0 < r < b.

• But this means (b, r) is a pair of positive integers with b+ r < b+ a. Since (a, b) was the
bad pair with the smallest sum, the pair (b, r) cannot be bad; if it were, I would’ve picked
(b, r) instead of (a, b). So (b, r) is not bad, which implies there must exist integers x′, y′

such that
x′b+ y′r = gcd(b, r) = gcd(a, b)

where the last equality follows from Theorem 1.

• But then,
x′b+ y′(a− bq) = g ⇒ y′a+ (x′ − y′q)b = g

that is, we have expressed g as an integer linear combination of a and b. This contradicts
that (a, b) was a bad pair at all.

Remark: The above gives a “short” certificate to prove a number g = gcd(a, b). Think for a
minute what it takes to prove to some one g is the GCD of two numbers a and b. For instance,
how can you prove that 44621 is the GCD of 2892199357 and 1499845673? Sure, we can check
that g divides both a and b; but that only proves that the GCD is greater than or equal to g.
How do we prove equality? If we were to do brute force, then we have to take all numbers bigger
than g and check that none of them divide both a and b. This is rather time consuming.
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The above fact shows that a smaller proof would be to find the x and y such that g = xa + yb.
This would then show that the GCD is less than or equal to g. Combined with the above, it
will show that g is indeed the GCD. For the above two numbers, for instance, we can see that
44621 = 6544×2892199357+(−12619)×1499845673 proving that 44621 is indeed the GCD.

5. Extended Euclid Algorithm. Indeed the above proof gives a recursive algorithm to find a
pair of integers (x, y) such that xa+ yb = gcd(a, b). This is given below.

1: procedure EXTGCD(a, b) . Assume a ≥ b ≥ 0.
2: . Returns the GCD of a and b. Also returns x, y such that xa+ yb = gcd(a, b)
3: Divide a by b to get a = bq + r.
4: if r = 0 then:
5: return (b, 0, 1)
6: else:
7: Let (g, x′, y′) =EXTGCD(b, r).
8: return (g, y′, x′ − y′q)

b

Exercise: Code the algorithm up in your favorite language.

b

Exercise: Are the x, y unique?. That is, can there be some other x′, y′ such that x′a + y′b =
gcd(a, b)?

A useful corollary is the following. It is, for instance, useful to prove two numbers are
relatively prime.

Theorem 3. If there exist integers x, y such that xa+ yn = 1, then gcd(a, n) = 1.

b

Exercise: Prove that any two consecutive numbers are relatively prime.

b

Exercise: Prove that any two consecutive odd numbers are relative prime.
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