
Balls and Bins II : Poisson Random Variables and Poisson Ap-
proximation1

• Recall the balls-and-bins setting: m balls are independently thrown into n bins. L
(m)
i is the random

variable indicating the number of balls in the ith bin. These are identical but not independent random
variables, whose expectation is m

n .

In this lecture, we connect these random loads with Poisson random variables which are a powerful
class of discrete random variables. In some sense, they form the discrete analog of the famous Gaus-
sian random variables. Of note will be the following “approximation theorem”: to argue about events
involving the random load vector ~L(m) := (L

(m)
1 , L

(m)
2 , . . . , L

(m)
n ), it suffices to argue about a vector

of independent Poissons, which is a much easier thing to do.

• To show the connection, let us figure out the probability L
(m)
i is exactly r for some non-negative

integer r. We see that

Pr[L
(m)
i = r] =

(
m

r

)
︸ ︷︷ ︸

ways to select r balls

·
(

1

n

)r
︸ ︷︷ ︸

which all fall in bin i

·
(

1− 1

n

)m−r
︸ ︷︷ ︸
and the rest don’t.

(1)

≈︸︷︷︸
when r � n

mr

r!
·
(

1

n

)r
· e−

m
n (2)

Let’s list out the approximations: we have approximated m(m − 1) . . . (m − r + 1) ≈ mr, we have
approximated

(
1− 1

n

)
≈ e−

1
n , and m− r ≈ m. All of these are “ok”, when n� 1 and r � n. But

the point is actually to show the connection with Poisson random variables which we describe next.

• Poisson Random Variables. A Poisson random variable Z with parameter µ, denoted as Z ∼
Pois(µ), is a non-negative integer valued random variable with pdf defined as

For non-negative integer r, Pr[Z = r] =
e−µµr

r!
(Poisson Random Variable)

Note that (2) is exactly the RHS of (Poisson Random Variable) when µ = m
n . Let’s verify a couple of

things, and then look at some magical properties of these variables.

Claim 1. Z defined in (Poisson Random Variable) is a valid probability distribution.

Proof. The RHS in (Poisson Random Variable) is indeed> 0 for any r. We need to check that it sums
to 1. Indeed,

∞∑
r=0

Pr[Z = r] = e−µ ·
∞∑
r=0

µr

r!︸ ︷︷ ︸
This is eµ

= 1
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Claim 2. The expectation of Z ∼ Pois(µ) is µ.

Proof.

Exp[Z] = e−µ
∞∑
r=1

r · µr

r!
= µe−µ

∞∑
r=1

µr−1

(r − 1)!
= µ · e−µ

∞∑
s=0

µs

s!︸ ︷︷ ︸
=1 Claim 1

= µ

Exercise: Calculate the variance of Z ∼ Pois(µ). Surprised?

Before we dive into the deeper connection with balls and bins, let’s cover a powerful fact about
Poisson random variables.

Theorem 1 (Sum of independent Poissons is Poisson). Let Z1, . . . , Zn be n independent Poisson
random variables with Zi ∼ Pois(µi). Then, Z :=

∑n
i=1 Zi is ∼ Pois(µ) where µ :=

∑n
i=1 µi.

Proof. Let’s prove this for n = 2 and the rest follows inductively. Let Z = Z1 + Z2. Then,

Pr[Z = r] =
r∑
s=0

Pr[Z1 = s ∧ Z2 = r − s] =︸︷︷︸
independence

r∑
s=0

Pr[Z1 = s] ·Pr[Z2 = r − s]

=
r∑
s=0

(
e−µ1µs1
s!

)
·
(
e−µ2µr−s2

(r − s)!

)

= e−(µ1+µ2)
r∑
s=0

µs1µ
r−s
2

s!(r − s)!
=
e−µ

r!

r∑
s=0

r!

s!(r − s)!︸ ︷︷ ︸
observe this is(rs)

µs1µ
r−s
2

=
e−µµr

r!
by the Binomial Theorem

This above facts allow us to prove exactly the same Chernoff bounds for sums of Poisson variables
(which, recall, are very different from Bernoulli variables; in particular, these Poisson random vari-
ables are unbounded.)

Theorem 2 (Chernoff Bounds for Sums of Independent Poissons.). Let X be a Poisson random
variable with parameter µ. Then for any t > 0, we have

Pr[X ≥ (1 + t)µ] ≤ e−µ·g(t) and Pr[X ≤ (1− t)µ] ≤ e−µ·h(t) (3)

where g(t) := (1 + t) ln(1 + t)− t and h(t) := (1− t) ln(1− t) + t.
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Remark: Consequently, using Theorem 1 one gets the following. Suppose X1, . . . , Xn are
independent Poisson random variables and X =

∑n
i=1Xi. Then for any ε ∈ (0, 1),

Pr[X ≤ (1− ε)Exp[X]] ≤ e−
ε2 Exp[X]

2 (LT)

and
Pr[X ≥ (1 + ε)Exp[X]] ≤ e−

ε2 Exp[X]
3 (UT1)

For the “upper tail”, that is for “larger” deviations, we have when 1 ≤ t ≤ 4, we have the
following (changing ε to t so as to underscore that the deviation is big)

Pr[X ≥ (1 + t)Exp[X]] ≤ e−
t2 Exp[X]

4 (UT2)

and for t > 4 (really large), we have

Pr[X ≥ (1 + t)Exp[X]] ≤ e−
t ln tExp[X]

2 (UT3)

• The Poisson Approximation : Connection with Balls and Bins. Till now, the connection between
balls-and-bins and Poisson random variables seems a bit tenuous: (2) is after all an approximation.
Is thinking of the L

(m)
i ’s as Poisson random variables correct? Is it useful? The following theorem

captures this connection rigorously, and is called the Poisson Approximation.

Theorem 3 (Poisson Approximation for Balls and Bins.).

Suppose you throw m balls into n bins, each ball independently landing on a bin uniformly
at random. Let E be an event of interest whose indicator random variable is a function of
f(L

(m)
1 , . . . , L

(m)
n ). Consider a second experiment where we choose n independent and iden-

tical Poisson random variables (Z1, . . . , Zn) where each Zi ∼ Pois(mn ). Then,

Pr[f(L
(m)
1 , . . . , L(m)

n ) = 1] ≤ e
√
m ·Pr[f(Z1, . . . , Zn) = 1] (Gen-PA)

and if f is a monotonically non-decreasing or non-increasing function, then in fact

Pr[f(L
(m)
1 , . . . , L(m)

n ) = 1] ≤ 2 ·Pr[f(Z1, . . . , Zn) = 1] (Mon-PA)

In plain English, the probability the event E occurs in the balls-and-bins setting can be approx-
imated by the probability that the same event occurs when the “loads” are independent Poisson
random variables.

• Lower bound on the maximum load. It should be clear how Theorem 3 can be useful : we now have
independence over the various bins which was missing in the normal balls-and-bins setting. Let us
illustrate this by showing a converse to a theorem we showed in a previous lecture : when we throw n
balls independently into n different bins, the maximum load is in fact Ω( lnn

ln lnn) with high probability.
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Theorem 4. For large enough n, if we throw n balls into n bins, then the probability the maxi-
mum load is ≤ lnn

2 ln lnn is at most 2e−
√
n.

Proof. Define f(x1, . . . , xn) = 1 if all xi ≤ lnn
2 ln lnn , and 0 otherwise. Note that f is a monotonically

decreasing function. We are interested in upper bounding Pr[f(L
(n)
1 , . . . , L

(n)
n ) = 1]. Instead, we

will upper bound the probability Pr[f(Z1, . . . , Zn) = 1], where Zi ∼ Pois(1) (note that m = n and
therefore, m/n = 1).

First, fix an Zi ∼ Pois(1) and let us calculate the probability this is less than L :=
⌊

lnn
2 ln lnn

⌋
.

Pr[Zi ≤ L] = e−1
∑
j≤L

1

j!
= e−1 · (e−

∑
j>L

1

j!︸ ︷︷ ︸
≥ 1

(L+1)!

) ≤ 1− 1

e(L+ 1)!

Now, since the Zi’s are independent, we get that Pr[f(Z1, . . . , Zn) = 1] = Pr[∧ni=1{Zi ≤ L}] =
(Pr[Zi ≤ L])n. Using (Mon-PA), we get

Pr[f(L
(n)
1 , . . . , L(n)n ) = 1] ≤ 2 ·

(
1− 1

e(L+ 1)!

)n
(4)

What remains is a calculation similar to the upper bound proof. We get that for large enough n,

ln (e(L+ 1)!) ≤ lnLL = L lnL ≤ lnn

2 ln lnn
· (ln lnn) =

lnn

2
⇒ e(L+ 1)! ≤

√
n

Substituting in (4), we get

Pr[f(L
(n)
1 , . . . , L(n)n ) = 1] ≤ 2

(
1− 1√

n

)n
≤︸︷︷︸

Use : (1− t) ≤ e−t to see this

2e−
√
n
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• The Proof of the Poisson Approximation Theorem. The main observation is the following elementary
lemma which states that if we throw m balls into n bins, then the distribution of the load vector is
precisely the same as the distribution of n independent Poisson random variables with parameter µ :=
m
n conditioned on the event that their sum is m. That is, if we sample n independent Poisson random
variables with parameter mn and reject anything whose sum is not m, then the resulting distribution of
vectors is the same as the distribution of the loads on the n bins when m balls are thrown.

Lemma 1. For any tuple of non-negative integers (m1,m2, . . . ,mn) such that
∑n

i=1mi = m,

Pr[(L
(m)
1 , L

(m)
2 , . . . , L(m)

n ) = (m1, . . . ,mn)] = Pr

[
(Z1, Z2, . . . , Zn) = (m1, . . . ,mn) |

n∑
i=1

Zi = m

]

where each Zi ∼ Pois(mn ) and are mutually independent.

Proof. There is not much to this lemma rather than a calculation. Let us calculate the LHS. How many
ways can we split m balls into n sets such that set i has mi balls? This is precisely the multinomial
coefficient, and equals (

m

m1,m2, . . . ,mn

)
=

m!

m1!m2! · · ·mn!

Given such a split, what is the probability that the first specified m1 balls go into bin 1? The answer
is
(
1
n

)m1 . Similarly for the other bins. And therefore,

Pr[(L
(m)
1 , L

(m)
2 , . . . , L(m)

n ) = (m1, . . . ,mn)] =
m!

m1!m2! · · ·mn!
·
(

1

n

)m
(LHS)

Now let’s compute the RHS. We get,

Pr

[
(Z1, Z2, . . . , Zn) = (m1, . . . ,mn) |

n∑
i=1

Zi = m

]
=

Pr[(Z1, Z2, . . . , Zn) = (m1, . . . ,mn)]∑n
i=1 Zi = m

(5)
Note that the numerator event implies the denominator event and therefore we don’t include it as an
“and” in the numerator. Now, the Pr[Zi = mi] = e−µµmi

mi!
, and the Zi’s are independent. Therefore,

Pr[(Z1, Z2, . . . , Zn) = (m1, . . . ,mn)] =
e−nµµm

m1!m2! · · ·mn!

Finally, by Theorem 1,
∑n

i=1 Zi is also a Poisson random variable with parameter nµ. Therefore,
Pr[
∑n

i=1 Zi = m] = e−nµ(nµ)m

m! . Plugging these into (5), we get

Pr

[
(Z1, Z2, . . . , Zn) = (m1, . . . ,mn) |

n∑
i=1

Zi = m

]
=

e−µµmi ·m!

e−nµ(nµ)m ·m1!m2! · · ·mn!

=
m!

m1!m2! · · ·mn!
·
(

1

n

)m
=︸︷︷︸

(LHS)

Pr[(L
(m)
1 , L

(m)
2 , . . . , L(m)

n ) = (m1, . . . ,mn)]
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• Completing the proof. Now we can prove Theorem 3. In fact, one can establish more general state-
ments than in (Gen-PA) and (Mon-PA). One can show that for non-negative function f : Zn → R≥0,
one has

Exp[f(L
(m)
1 , L

(m)
2 , . . . , L(m)

n )] ≤ e
√
m ·Exp[f(Z1, Z2, . . . , Zn)]

and if f is monotone, the e
√
m can be replaced by 2. This implies the theorem since the expectation

is the same as probability of occurrence for an indicator random variable. We start with the RHS:

Exp[f(Z1, . . . , Zn)] =
∞∑
k=0

Exp[f(Z1, . . . , Zn)|
∑
i

Zi = k] ·Pr[
n∑
i=1

Zi = k]

≥ Exp[f(Z1, . . . , Zn)|
n∑
i=1

Zi = m] ·Pr[
n∑
i=1

Zi = m] This uses non-negativity of f .

=︸︷︷︸
Lemma 1

Exp[f(L
(m)
1 , L

(m)
2 , . . . , L(m)

n )] · e
−mmm

m!

The proof follows since m! < e
√
m(m/e)m.

To replace the e
√
m by 2 for monotone functions, one is a bit more careful with the inequality. Sup-

pose f was monotonically increasing (non-decreasing). Then,

∞∑
k=0

Exp[f(Z1, . . . , Zn)|
∑
i

Zi = k]·Pr[
n∑
i=1

Zi = k] ≥ Exp[f(Z1, . . . , Zn)|
n∑
i=1

Zi = m]·Pr[
n∑
i=1

Zi ≥ m]

because if the
∑

i Zi is larger, f is only larger. And now uses another pretty fact about Poisson random
variables.

Fact 1. Let Z ∼ Pois(m) where m is an integer. Then Med(Z) = m. That is, Pr[Z ≥ m] ≥ 1
2 and

Pr[Z ≤ m] ≥ 1
2 .

Plugging this fact into above gives the 2. Do you see how to get the 2 when f is monotonically
decreasing (non-increasing)?
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