
Hashing II: Fingerprinting1

• Back to Alice and Bob from Lecture 1. Recall the problem we started the course with. Alice and
Bob have bit-strings x ∈ {0, 1}n and y ∈ {0, 1}n, and they wish to figure out if x = y? We saw
that if they had access to public randomness, that is, a series of random bits on which both of them
can agree upon, then Alice can send a dot-product of x with a random r which Bob checks with
y · r. If x 6= y, then the probability the dot-products are equal is 1

2 . Thus, to solve the problem with
probability 1− δ, Alice needed to send only dln(1/δ)e bits.

We now show how Alice can solve the problem without assuming any public randomness on which
Alice and Bob need agree. Instead she will use “private randomness”. Using this, Alice will generate
a small sketch or a fingerprint of her string x. This information will allow Bob to form his sketch of y,
and accept if the sketches match. The Lecture 1 idea was similar, but the “sketch” needed the random
vector r which couldn’t be sent as that was n bits long.

• The idea is very similar to hashing. Alice wants to pick a function h from a family H which satisfies
the following properties: (a) h : {0, 1}n → {0, 1, . . . , ` − 1} where ` � n, (b) h is “small”, that
is, its description size is � n, and (c) if x 6= y, then h(x) 6= h(y) with high probability. This is
precisely what a universal hash family H satisfies. Except, the universe size here N = 2n, and the
size of the Carter-Wegman function, for instance, is O(lgN) which takes us back to the n regime. In
other words even the UHF size |H| is too large for this purpose. Something even smaller is needed.

• This construction uses a bit of number theory, in particular, a fact about prime numbers. Let π(n) be
the function denoting the number of prime numbers in the integers {1, 2, . . . , n}. We understand what
π(n) looks like very well. It is known that π(n) ∼ n

lnn , and is called the prime number theorem. The
part that we need is π(n) ≥ n

lnn , or rather the following corollary

For any positive integer k, the kth prime Pk is at most 2k ln k.

• Now we are ready to describe the “smaller” hash family. Let p be a prime. Define the function
hp : {0, 1}n → {0, 1, . . . , p− 1} as

hp(x) = int(x) mod p where int(x) is the integer whose binary representation is x

Note that the size of the function and its output are both O(log p) bits. Now, let P2n be the (2n)th
prime. By the prime number theorem, P2n = O(n lnn). DefineH := {hp : 1 ≤ p ≤ Pn, p prime}.
This is the family of “hash functions”, or as it more commonly called, fingerprint functions, from
which Alice chooses her hash. Note that |H| = 2n, by definition. And every function hp ∈ H takes
O(lnn) bits to describe. Here is the main fact that resolves collisions.

Lemma 1. Given x 6= y, Prhp∈H [hp(x) = hp(y)] ≤ 1
2 .

1Lecture notes by Deeparnab Chakrabarty. Last modified : 11th April, 2021
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

1

Remark: Note that it is much weaker than what UHFs require. The range of the function has p
elements, but the probability of collision is only bounded by 1

2 . But this suffices for the communi-
cation purpose.

Before we prove the lemma, let’s show the protocol between Alice and Bob.

1: procedure ALICE-EQ(x):
2: for i = 1 to k do:
3: Choose hpi randomly from H , that is, pi a random prime between 1 and 2n.
4: Compute ai := hpi(x) = int(x) mod pi. . ai is O(log n) bits long.

5: Send a := ((ai, pi) i = 1, . . . , k) to Bob. . This is O(k log n) bits of communication.

1: procedure BON-EQ(x): . Receives a
2: Using p1, . . . , pk, Bob computes bi := hpi(y) = int(y) mod pi.
3: Bob rejects if any bi 6= ai, and accepts if all are equal.

If x = y, we must have ai = bi for all i. If x 6= y, then the probability all k of them are equal,
by Lemma 1 is ≤ 1

2k
. Therefore,

Theorem 1. For any δ > 0, Alice and Bob can solve the equality problem with error probability
≤ δ communicating k := O(log n log(1/δ)) bits, with private randomness.

• Proof of Lemma 1. hp(x) = hp(y) if int(x) ≡p int(y), or in other words, p divides a := |int(x) −
int(y)|. Since x 6= y, we get that a is a positive integer. Since both x and y are n-bit vectors,
we get a < 2n. Let p1, . . . , pt be the distinct primes between 1 and 2n which divide a. Thus,
a ≥

∏t
i=1 pi ≥ 2t since each prime is ≥ 2. Indeed, this implies that t < n. Since p is chosen among

the first 2n primes, the probability p is one of the pi’s is t
2n <

1
2 . �

• Karp-Rabin Pattern Matching Algorithm. In the pattern matching problem, we are given a string
x ∈ {0, 1}n and a pattern string y ∈ {0, 1}m, where you should think n � m. The objective is
to figure out if y exists as a substring of x. That is, does there exists j ∈ [n] such that xj = y1,
xj+1 = y2, and so on, till xj+m+1 = ym. Naively, this algorithm takes O(nm) time. We now show
a simple randomized O(n+m) algorithm using fingerprinting.

The idea is similar to the one given for equality. The algorithm selects a random prime p among the
first k primes, where we set k = n2m later. Next it computes hp(y). Then it does a single loop over
x, and in iteration j, it checks if hp(x(j)) =?hp(y), where x(j) = (xj ,xj+1, . . . ,xj+m+1).

Note that if x(j) = y, then the two fingerprints would be the same. If x(j) 6= y, then the probability
their fingerprints are the same is, as above, is ≤ m

n2m
= 1

n2 . Therefore, by an union bound, the
probability any of these (n−m) fingerprints match is at most 1

n .

What is the running time of the algorithm? First note that the size of p is O(lg(n2m lg(n2m)) bit,
which is O(log n). It takes around that time to evaluate O(hp(y)). How about computing hp(x(j)).
Next we use our final observation: we see that,

int(x(j+1)) = 2 ·
(
int(x(j))− 2m−1xj

)
+ xj+m

2

and therefore,
hp(x

(j+1)) = 2 ·
(
hp(x

(j) − 2m−1xj

)
+ xj+m mod p

which can be calculated in O(1) time (assuming p fits in a single word).

3

