Hashing III : Perfect Hashing ${ }^{1}$

- We saw that universal hash functions allow us to solve the static dictionary problem of searching in a set $D \subseteq U$ of m elements from a universe of N elements in $O(1)$ query time, and $O(m)$ space. However, the query time is in expectation. That is, for any $x \in U$, the expected time (given h) to search is $O(1)$. In particular, if an "adversary" knew the function h, then they could find an x for which $\operatorname{SEARCH}(x)$ took more than constant time. In this lecture we see an idea of double hashing which allows one to obtain an worst-case $O(1)$ time result.
- A large space solution. Before describing the double-hashing idea, let us show an $O(1)$ worst-case solution which takes $O\left(m^{2}\right)$ space. The main ideas are from the birthday paradox problem: if one throws $\leq \sqrt{n} / 2$ balls into n bins, then constant probability there is no collision.
Let H be a UHF of functions $h: U \rightarrow\left[m^{2}\right]$, where we use $[k]$ as a shorthand for $\{0,1, \ldots, k-1\}$. For $x, y \in D$ with $x \neq y$, let $Z_{x, y}$ be the indicator random variable that $h(x)=h(y)$ when $h \in_{R} H$ is drawn uar. Let $Z:=\sum_{(x, y) \in D \times D, x \neq y} Z_{x, y}$ denote the number of collisions. By the property of UHF, we know that $\operatorname{Pr}\left[Z_{x, y}=1\right] \leq \frac{1}{m^{2}}$. Thus,

$$
\operatorname{Exp}[Z] \leq\binom{ m}{2} \cdot \frac{1}{m^{2}}<\frac{1}{2} \Rightarrow \operatorname{Pr}[Z=0] \geq \frac{1}{2}
$$

In plain English, if we draw an $h \in H$ uar, then the probability we get a perfect hash function with no collisions is $\geq \frac{1}{2}$. Thus, the pre-processing step of "keep sampling $h \in H$ till we get a perfect hash function" takes $O(m)$ time. And once we get a perfect hash function, then $\operatorname{SEARCH}(x)$ is $O(1)$ time worst-case.

- Double Hashing. Recall the hashing solution we had. We hashed $x \in D$ to $T[h(x)]$ where $T[h(x)]$ was a list. In expectation, this list size was small, but some lists could indeed be big, and therefore, in worst-case, the search time is not $O(1)$. The idea of double hashing is simple: instead of using a list to store $T[h(x)]$, use another hash-function. Except this second hash-function is going to be a perfect hash function for the smaller dictionary of the items that get mapped to $T[h(x)]$. If b_{i} elements get mapped to $T[h(x)]$, then from the previous bullet point, the space required would be $O(m)$ (for the first hash function) and $\sum_{i=1}^{n} O\left(b_{i}^{2}\right)$ for the n secondary hash-functions. Since we don't expect any b_{i} to be very large, the sum of squares can be bounded by $O(m)$. This is the high level idea, and now we give details.
- Construction using UHFs. We are going to draw our first-level hash function (the primary hash function) from a UHF family mapping U to $n:=m$.
For $1 \leq i \leq n$, define b_{i} to be the number of $x \in D$ with $h(x)=i$. As discussed above, we wish to argue that $B:=\sum_{i=1}^{n} b_{i}^{2}$ is small. Indeed, we can show $\operatorname{Exp}[B]$ is small as follows.

[^0]Define $C_{i}:=\binom{b_{i}}{2}$ denote the number of pairs of distinct x and y which map to the position i. Define $C:=\sum_{i=1}^{n} C_{i}$ to be the total number of collisions. Now note that

$$
C=\sum_{(x, y) \in D \times D: x \neq y} Z_{x, y}
$$

where $Z_{x, y}$ is the indicator random variable of the event $h(x)=h(y)$. Since h is drawn from a UHF, we get that

$$
\mathbf{E x p}[C] \leq\binom{ m}{2} \cdot \frac{1}{n}=\frac{m-1}{2} \quad \text { since } n=m
$$

Now, we get

$$
\operatorname{Exp}[B]=\mathbf{E x p}\left[\sum_{i=1}^{n} b_{i}^{2}\right]=\mathbf{E x p}\left[\sum_{i=1}^{n}\left(b_{i}+2 \cdot\binom{b_{i}}{2}\right)\right]=\underbrace{\operatorname{Exp}\left[\sum_{i=1}^{n} b_{i}\right]}_{=m}+2 \cdot \underbrace{\operatorname{Exp}[C]}_{\leq \frac{m-1}{2}}<3 m
$$

And thus, by Markov's inequality

$$
\boldsymbol{\operatorname { P r }}[B \geq 6 m] \leq \frac{1}{2}
$$

Therefore, in $O(1)$ samples of h from the UHF family, we can obtain one with $B \leq 6 m$. And then, we simply apply the perfect hash functions from the second bullet point.

- Algorithm Details. Now we are ready to describe the pre-processing and the SEARCH algorithm.

```
procedure \(\operatorname{PrEPROCESS}(D): \triangleright|D|=m\).
    while true do:
        Draw \(h\) from a strongly UHF which takes \(U\) to \([n]\) where \(n=m\).
        Evaluate \(b_{i}\) which is the number of \(x \in D\) mapping to \(i\), for all \(i \in[n] . \triangleright O(m)\) time .
        if \(\sum_{i=1}^{n} b_{i}^{2}>6 m\) then: \(\triangleright\) This occurs with probability \(\leq \frac{1}{2}\).
            Abort this loop and go to next loop.
    \(\triangleright\) At this point, we know \(\sum_{i=1}^{n} b_{i}^{2} \leq 6 \mathrm{~m}\).
    for \(1 \leq i \leq n\) do:
        Let \(D_{i}:=\{x \in D: h(x)=i\}\) with \(b_{i}=\left|D_{i}\right|\).
        Construct perfect hash function \(g_{i}: U \rightarrow\left[b_{i}^{2}\right]\) as in second bullet point for \(D_{i}\).
        Construct the corresponding hash table \(T_{i}\left[0: b_{i}^{2}-1\right]\)
        \(\triangleright\) This takes \(O\left(b_{i}\right)\) time in expectation, and uses \(O\left(b_{i}^{2}\right)\) space.
        Store \(x\) in location \(T_{i}\left[g_{i}(x)\right]\).
    \(\triangleright\) The total time and space taken over the for-loops is \(O(m)\) time.
```

To search for a given $x \in U$, we first compute $i:=h(x)$, and then search for x in $T_{i}\left[g_{i}(x)\right]$. This takes $O(1)$ time if function computations and accesses are $O(1)$ time.

- Space Analysis. The total space required in the hash-tables are $\sum_{i=1}^{n} b_{i}^{2} \leq 6 m$ by design. The total time taken to find the g_{i} 's is $\sum_{i=1}^{n} O\left(b_{i}\right)=O(m)$.

[^0]: ${ }^{1}$ Lecture notes by Deeparnab Chakrabarty. Last modified : 11th April, 2021
 These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at deeparnab@dartmouth.edu. Highly appreciated!

