
Streaming I : Frequency Estimation via Count-Min1

• Streaming Algorithms. Imagine there is a huge corpus of data and you are allowed to make a serial
pass over it. At any time, you can store information in your local memory, but the size of your
memory is orders of magnitude smaller than the data itself. What problems on the data corpus can
we still solve? This set of questions has led to the rich area of streaming algorithms. A whole course
can, and indeed in Dartmouth is, taught on it. In the next few lectures, we will see some of the
main highlights focusing on how randomization is used to solve these problems. For many of them,
randomness is indeed necessary, but why that is the case is outside the scope of this course.

• A paradigmatic example of streaming problems is frequency analysis. Imagine the data corpus being
a collection of updates on a universe of size n. Formally, let U be a universe of n items, and let f
be an n-dimensional vector where fi denotes the number of occurrences of the element i in our data.
Each “update” in the data looks of the form (i, c) where i ∈ [n] and c is an integer. This is supposed
to capture the intuition that we encounter c copies of this element i. In that case, we set fi ← fi + c.
After we make one pass through the data, which takes say m updates, the final vector f will denote
the histogram of the n elements in the data set. Frequency analysis asks what all about this frequency
vector can we capture, given that our working memory s� min(m,n)?

Remark: From a first reading, one may think c is a non-negative integer. But this may not nec-
essarily be the case. For instance, if we think of these updates as “bank transactions”, then there
could be both deposits and withdrawals. The complexity of the problems do change depending
on if c ≥ 0 or if c is general. The always non-negative model is often called the insertion only
model or the cash register model. The other is called the dynamic streaming or turnstile model.

• We will look at the following two kinds of problems in the next few lectures. One, would be estimating
each frequency. So, for every i ∈ [n], we would like to estimate fi up to certain accuracy. We will see
a couple of (pretty widely used in practice) algorithms for this.

The second will be estimating some broader statistics called frequency moments. Given a parameter
k > 0, define

Fk :=

n∑
i=1

fki

This is called the kth frequency moment. Note that F1 is particularly easy to calculate in the insertion
only model (you see it, right?). We will see algorithms for estimating F2 and also every Fk for k ≥ 2,
and will also look at an algorithm for estimating F0, which is defined to be the number of distinct
elements in the stream. That is, the number of i’s for which fi ≥ 1. To do so, we will utilize many of
the tools we have covered so far in the course.
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• Estimating Frequencies via Count-Min. We first work in the insertion only model. So for every
update (i, c), we assume c ≥ 0. The algorithm we give is the COUNT-MIN algorithm2 by Graham
Cormode and S. Muthukrishnan.

The main idea behind this algorithm is simple: we hash the universe [n] into a smaller set [k] using
a hash function h drawn from a universal hash family, and we work with the “estimated frequency”
vector on [k]. That is, we maintain k counters C[1] to C[k], and every time an update (i, c) appears,
we increment the counter corresponding to h(i); C[h(i)]← C[h(i)]+ c. At the end of the stream, we
estimate the frequency of i ∈ [n] as

f̂i := C[h(i)]

Since we have assume c ≥ 0, this estimate is clearly an overestimate; for any i we have f̂i ≥ fi with
probability 1. In fact, we precisely know how much the overestimate is by. It is

f̂i = fi +
∑

j∈[n],j 6=i,h(j)=h(i)

fj (1)

To see this, apart from i, note that every update involving j, with h(j) = h(i), will increment the
same counter C[h(i)]. And this increment will precisely be fj “times”. Therefore, we get that the
expected value of the estimate (expectation over the randomness in the choice of the hash-function) is

Exp
h

[̂fi] = fi +
∑
j 6=i

Pr[h(j) = h(i)] · fj ⇒ Exp
h

[̂fi] ≤ fi +
1

k

∑
j 6=i

fj ≤ fi +
1

k
· ‖f‖1

Note that this estimate is not an unbiased estimate. Nevertheless, one can get a “high-probability” es-
timate. Also, the final analysis of the “error term” would be additive and would be expressed in terms
of an additive ε ‖f‖1. Note if we divide by ‖f‖, then this would imply an additive ε-approximation
to the relative frequency. For the main application described later, this is the kind of guarantee one
needs.

A simple Markov’s inequality application gives

Pr
[
f̂i − fi ≥

e

k
‖f‖1

]
≤ 1

e
(2)

To boost this probability, and using the fact that f̂i ≥ fi always, we simply repeat t times and take the
minimum. In other words, instead of maintaining k counters, we maintain tk counters, and each of
the t counters uses an independent draw of a hash-function from the UHF. Thus, we obtain t different
estimates f̂ (1)i , . . . , f̂

(t)
i . Our final estimate is the minimum.

• The Algorithm.

2Graham Cormode and S. Muthukrishnan. “An improved data stream summary: The count-min sketch and its applications.”
Journal of Algorithms, 55:58–75, 2006.
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1: procedure COUNT-MIN(ε, δ):
2: Let H be a universal hash family with domain size [n] and range k =

⌈
e
ε

⌉
.

3: Sample t = dln(1/δ)e hash functions h1, . . . , ht independently from H . . Each hash
function is assumed to be stored in O(1) space

4: Maintain kt counters C1[1 : k], C2[1 : k], . . . , Ct[1 : k].
5:

6: for update (i, c): do . Assume c ≥ 0

7: Increment Cj [hj(i)]← Cj [hj(i)] + c for 1 ≤ j ≤ t.
8: Upon Query i ∈ [n], return f̂i := min1≤j≤tCj [hj(i)] for all 1 ≤ i ≤ n.

• Analysis.

Theorem 1 (Count-Min Analysis.). The total space usage of the COUNT-MIN algorithm is
O
(
1
ε lg

(
1
δ

))
words. For any 1 ≤ i ≤ n, we have

fi ≤ f̂i ≤ fi + ε · ‖f‖1 (3)

with probability ≥ 1− δ.

Proof. Firstly, note that for any i ∈ [n], since every Cj [hj(i)] ≥ fi, we have f̂i ≥ fi as well. Now fix
an i ∈ [n]. From (2), for every 1 ≤ j ≤ t we get that

Pr[Cj [hj(i)] ≥ fi + ε · ‖f‖1] ≤
1

e

The probability that the minimum overestimates, therefore is

Pr[̂fi ≥ fi + ε · ‖f‖1] ≤
1

et
≤ δ

if t = dln(1/δ)e. The space bound arises because there are dln(1/δ)e · de/εe different hash functions
and counters, each taking O(1) space.

Remark: Note that for every i, there is a probability δ of error. The theorem is not stating that
with probability 1−δ, all estimates are withing the desired range. To get every i within the desired
range, we would have to use union bound and the space would go up to O(ε−1 log(n/δ)).

• Application: Range Queries. What if you were interested in the frequency of a certain “interval” of
the items? For instance, suppose the elements were totally ordered as {1, 2, . . . , n}, and at the end of
the stream we wanted to answer queries of the form : for 1 ≤ a < b ≤ n, what is

∑
a≤i≤b fi? Can we

estimate this sum to within ε ‖f‖?
Note that although we can estimate every point to within ε′ ‖f‖, the sum may lead to an error of
ε′|b − a| ‖f‖. So, if we wanted the sum to be within ε ‖f‖, we would have to set ε′ to be ε/n. And
that would be lead to basically using O(n) space. Can we do better? We can.
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Observation 1. COUNT-MIN as described above is designed so as to estimate fi for every individual
i ∈ [n]. However, given any partition A1 ∪A2 ∪ . . .∪Ar = [n] of the n elements, we can modify the
algorithm such that with O(1ε lg(1/δ) · log r) bits we can ensure that for any i ∈ [r] we can obtain an
estimate

f(Ai) ≤ f̂(Ai) ≤ f(Ai) + ε ‖f‖1
We simply treat every element in Ai as the same element and use hash functions from [r] to [k]. Let’s
call this modification INTERVALCOUNTMIN.

Observation 2. Now we solve the range-query problem using a “binary-search” style idea. For sim-
plicity, let n be a perfect power of 2. Consider a binary tree with lg n levels, whose nodes correspond
to intervals of [1 : n]. The root is the interval [1 : n]. Its two children are [1 : n/2] and [n/2 + 1 : n],
and so-on-and-so-forth till we have the individual elements at the leaves. So, in general, these 2n− 1
intervals look like [j · n

2i
+ 1 : (j + 1) · n

2i
] with 0 ≤ i ≤ lg n and 0 ≤ j ≤ 2i − 1. These intervals

are called dyadic intervals. Here is a cool fact which is key to the problem at hand : any interval [a, b]
can be partitioned into ≤ 2 lg n dyadic intervals. Do you see why?

1   2   3   4   5   6   7   8 

1   2   3   4 5   6   7   8

1   2 3   4 5   6 7   8

1 2 3 4 5 6 7 8

Figure 1: An illustration of the dyadic intervals for n = 8. Note that the interval [2 : 7] is broken down into
4 dyadic intervals.

Armed with this fact, here is what we do. At each layer of the tree, we have a partition of the n ele-
ments into dyadic intervals. For each such partition, we run INTERVALCOUNTMIN with ( ε

2 lgn ,
δ

2 lgn).
Given [a, b], we first find [a, b] = I1+ . . .+I` for ` ≤ 2 lg n. By our INTERVALCOUNTMIN property,
we have that with probability 1− ` · δ

2 lgn ≥ 1− δ (after union bounding),

For each 1 ≤ j ≤ `, f(Ij) ≤ f̂(Ij) ≤ f(Ij)+
ε

2 lg n
‖f‖1 ⇒ f([a, b]) ≤ f̂([a, b]) ≤ f([a, b])+ε ‖f‖1

This gives the desired error per query. How much space did we use? Each INTERVALCOUNTMIN

requires O
(
logn
ε · log

(
lgn
δ

))
, and there are O(log n) such data-structures. This gives a total space

of O( log
2 n
ε · log( lognδ )).

Exercise: Remove the log logn term and show how you would modify the above to get a
O( log

2 n
ε · log(1/δ)) dependency? Hint : Don’t use black-box, but modify.
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