
Streaming II : Count Sketch and Estimating F2.1

• An Unbiased Estimate for Frequencies. In the previous lecture, we saw that COUNTMIN gave an
estimate for fi which was biased. And yet, at least in the insertion only model, for any i, we could
bound the error to within ε ‖f‖1 with probability ≥ 1− δ. The space used was O(1ε lg(1/δ)).

In this lecture we will see an unbiased estimate to fi. Chronologically, this algorithm called COUNT-
SKETCH due2 to Moses Charikar, Kevin Chen, and Martin Farach-Colton predated the COUNT-MIN

algorithm. We will see it is in some sense incomparable to COUNT-MIN. On the one-hand, the
dependence on ε will be 1

ε2
instead of 1

ε . On the other hand, the accuracy of the estimate will be
better: we will have |̂fi − fi| ≤ ε ‖f‖2. And the 2-norm of a vector is always at most the 1-norm, and
can be much smaller.

The idea is still the same : one hashes [n] to [k], maintains k-counters, and updates only the counters
of the hashes. Except, COUNT-SKETCH multiplies each entry with a random {−1, 1} factor. More
precisely, upon receiving the update (i, c), the counter C[h(i)] is updated to C[h(i)] + c · g(i) where
g(i) ∈ {−1,+1} with probability 1/2. That is, g is another hash function drawn from a UHF with
domain [n] and range {−1, 1}. Note that the counter values can now be negative. At the end, the final
estimate is corrected by multiplying with the same g(i); the estimate f̂i := C[h(i)] · g(i).
The intuition is this : if nothing collided with i, then C[h(i)] would precisely contain g(i) · fi. And
thus, when one multiplies with g(i) again, because g(i) ∈ {±1}, f̂i would be fi. On the other hand
for the collisions for j 6= i, the expected value of g(i)g(j) is 0. This leads to an unbiased estimate.
One can then do the median-of-means trick to obtain an (ε, δ)-estimate. The variance contains the
`2-norm ‖f‖2 of the frequency vector.

• Algorithm.

1: procedure COUNT-SKETCH(ε):
2: Let H be a universal hash family with domain size [n] and range k =

⌈
3
ε2

⌉
.

3: Let G be a strongly universal hash familya with domain size [n] and range {−1,+1}.
4: Maintain counters C[1 : k]. Draw h ∼ H and g ∼ G
5: for stream update (i, c): do . Assume c ≥ 0

6: Update C[h(i)]← C[h(i)] + c · g(i).
7: For 1 ≤ i ≤ n, return f̂i = g(i)C[h(i)].

aFor i 6= j, probability g(i) = a and g(j) = b for any a, b ∈ {−1, 1} is 1/4.

1Lecture notes by Deeparnab Chakrabarty. Last modified : 15th April, 2021
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

2Charikar, Moses, Kevin Chen, and Martin Farach-Colton. “Finding frequent items in data streams.” International Colloquium
on Automata, Languages, and Programming (ICALP), 2002.

1

Remark: The algorithm works in the dynamic streaming or turnstile model which allows c’s to
be negative.

• Analysis.

Theorem 1 (Basic Count Sketch Analysis.). For any 1 ≤ i ≤ n, with probability ≥ 2
3 , we have

|̂fi − fi| ≤ ε ‖f‖2. The space required is O(1
ε2
). Therefore, taking O(ln(1/δ))-parallel estimates

and returning the median, gives the same result with probability ≥ 1 − δ, with a space blow up
of O(ln(1/δ)).

– As in the analysis of COUNT-MIN, we observe that for any i ∈ [n],

C[h(i)] = g(i) · fi +
∑

j 6=i:h(j)=h(i)

g(j) · fj (1)

And therefore,
f̂i = fi +

∑
j 6=i:h(j)=h(i)

g(i)g(j) · fj

Taking expectations over the choices of both h and g, we get

Exp[̂fi] = fi +
∑
j 6=i

Pr[h(j) = h(i)] · fj Exp
g

[g(i)g(j)]

Now, Expg[g(i)g(j)] = 1 ·Pr[g(i) = g(j)] + (−1)Pr[g(i) 6= g(j)] = 0. This gives us that f̂i
is an unbiased estimate.

– Let’s now calculate the variance of f̂i. To do so, we first observe that Exp[̂f2i] = Exp[(C[h(i)])2].
Using (1), we get

(C[h(i)])2 = f2i +
∑

j 6=i:h(j)=h(i)

f2j +
∑

j,k:j 6=k,h(j)=h(k)=h(i)

g(j)g(k)fjfk

Taking expectations, we see

Exp[̂f2i] = f2i +
∑
j 6=i

f2j
k
⇒ Var[̂fi] = Exp[̂f2i]−

Exp[̂fi]︸ ︷︷ ︸
=fi

2

≤ 1

k
· ‖f‖22

where again we have used the fact that for any j 6= k, we have Exp[g(j)g(k)] = 0.

– And therefore Chebyshev’s inequality gives us that if k ≥ 3
ε2

, then

Pr[|̂fi − fi| ≥ ε ‖f‖2] ≤
Var[̂fi]

ε2 ‖f‖22
≤ 1

3

2

• Estimating F2: the “Tug-of-War” Sketch. Continuing on our theme of presenting things in a non-
chronological order, let us look at the algorithm for estimating F2. Recall, F2 := ‖f‖22 is the squared
`2-norm of the frequency vector. This question, and more generally the question of studying other fre-
quency moments, was initiated in a seminal paper3 by Noga Alon, Yossi Matias, and Mario Szegedy.
Although it was not the first paper on streaming algorithms, this arguably opened the floodgates in
this area. Indeed, the algorithm shown below for estimating F2 contains the main ideas for COUNT-
SKETCH, which in turn contains the main ideas behind COUNT-MIN.

The main idea is to pick a hash function g : [n] → {−1, 1} from a hash family. We want something
stronger than UHFs here. For the lecture, you can keep the mental model of each g(i) being ±1
uniformly at random and independent of g(j). Formally, what we need is that the familyG has 4-wise
independence. That is, we need

For any four distinct w, x, y, z ∈ [n], and any four a, b, c, d ∈ {−1,+1},

Pr
g∼G

[g(w) = a, g(x) = b, g(y) = c, g(z) = d] =
1

16
(4-way independence)

The algorithm maintains an estimate Z initialized to 0. Upon encountering update (i, c), it simply
updates Z ← Z+g(i) · c. At the end, it returns Z2 as the estimate of ‖f‖22. I hope you all see the sim-
ilarity with COUNT-SKETCH. Alon, Mattias, and Szegedy called4 this the “Tug-of-War” algorithm.

1: procedure AMS TUG-OF-WAR:
2: Let G be a 4-wise independent universal hash family with domain size [n] and range
{−1,+1}.

3: Draw g ∼ G. Initialize Z ← 0.
4: for update (i, c): do . Assume c ≥ 0

5: Update Z ← Z + c · g(i).
6: return Z2.

• Analysis.

Theorem 2 (Tug-of-War Analysis.). For any ε, δ, there is an algorithm taking O(1
ε2

ln(1/δ))-
words of space which with probability (1− δ) computes an (1± ε) estimate to F2 = ‖f‖22.

– As in the COUNT-SKETCH analysis, we begin by observing that at the end of the stream,

Z =
n∑

i=1

g(i)fi ⇒ Z2 =

(
n∑

i=1

g(i)fi

)2

=
n∑

i=1

f2i + 2
∑

1≤i<j≤n
g(i)g(j)fifj

And again using Expg∼G[g(i)g(j)] = 0, we get that Exp[Z2] = ‖f‖22. That is, the algorithm
returns an unbiased estimate.

3Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the frequency moments. J. Comput.
Syst. Sci., 58(1):137–147, 1999.

4To be precise, this was named Tug-of-War in a follow-up paper of Noga Alon, Phillip B. Gibbons, Yossi Matias, Mario
Szegedy: Tracking Join and Self-Join Sizes in Limited Storage. J. Comput. Syst. Sci. 64(3): 719-747 (2002)

3

– To calculate the variance of Z2, we need to compute the expectation of Z4. This is the fourth
power of a sum of the g(i)fi’s. When one opens this up, one gets many terms. However any
term that contains the product g(i)g(j) for two distinct i, j will “vanish” when we take the
expectation. In fact so will the expectation of g(i)g(j)g(k)g(`) for four distinct i, j, k, `, and
this just needs (4-way independence) (and the only place where it is used). So, once we take the
expectation of Z4, all that will remain are the fourth powers of fi’s and the products of f2i f

2
j ’s.

More precisely,

Exp[Z4] =

n∑
i=1

f4i + 6
∑

1≤i<j≤n
f2i f

2
j

Now note that (
Exp[Z2]

)2
=

(
n∑

i=1

f2i

)2

=
n∑

i=1

f4i + 2
∑

1≤i<j≤n
f2i f

2
j

which implies
Var[Z2] = 4

∑
1≤i<j≤n

f2i f
2
j ≤ 2

(
Exp[Z2]

)2
where the inequality follows by simply comparing the above two equalities.

– Therefore, Var[Z2]/(Exp[Z2])2 ≤ 2, which implies via the median-of-means theorem that
taking O

(
1
ε2

ln(1/δ)
)

parallel estimates of Z2 can lead to an (ε, δ)-estimate for F2.

4

