
Streaming III : Estimating Fk and Reservoir Sampling1

• Estimating Fk in Insert Only Streams. In this lecture we look at another estimation algorithm from
the Alon-Mattias-Szegedy paper which we mentioned last time. We will estimate Fk :=

∑n
i=1 f

k
i , for

k ≥ 2. Unfortunately, the space needed will be nowhere close to what we obtained for the Tug-of-War
algorithm. Indeed, it will be “barely sublinear”. For this presentation, we will focus only on insert
only streams, and in fact, only on updates of the form (i, 1).

• “Intuition”. Recall the main problem in exactly computing Fk: we can’t know all the fi’s. But, we
can definitely know one of the fi’s exactly at the end: simply keep track of that particular element
and forget the rest. So an idea emerges: sample i ∈ [n] uniformly at random, evaluate fi exactly, and
return Z = n · fki . One can easily check Z is unbiased. The problem is the variance.

Exp[Z2] =
1

n

n∑
i=1

n2f2ki = n · F2k ⇒
Var[Z]

Exp2[Z]
= n · F2k

(Fk)2
− 1

In the extreme case when one element dominates the stream, we get F2k ≈ (Fk)
2, which means that

one would need n-repetitions. Not good.

However, what if we could do “importance sampling”: suppose we could somehow sample i propor-
tional to fi, and then do exactly the same thing? More precisely, suppose we sampled i ∈ [n] with
probability fi

F1
, evaluate fi exactly, and then return Z = F1 · fk−1

i . Then note

Exp[Z] =

n∑
i=1

fi
F1
· F1f

k−1
i = Fk and Exp[Z2] =

n∑
i=1

fi
F1
· F 2

1 f
2k−2
i = F1 · F2k−1

How good is this? The next “fact” shows that it’s not too bad. The proof of this fact is some analytical
manipulation which is not really important for the main ideas in this lecture. We defer the proof to the
very end.

Fact 1. For any non-negative numbers (f1, . . . , fn), we have F1 · F2k−1 ≤ n1− 1
k (Fk)

2.

We will provide this proof later. But note that this implies that o(n) samples suffices, and indeed this
is what we will achieve.

• Of course, we don’t a priori know how to sample i ∈ [n] with probability fi
F1

. The first thing we
will see today is a procedure of sampling a random element from a stream. More precisely, given
any stream of elements (with repetitions), we show how to end up with a random element R from the
stream. That is, for any i ∈ [n], Pr[R = i] = fi

F1
. This algorithm, which is by itself something worth

keeping in ones arsenal, is called reservoir sampling.

However, we get this random element at the end of the stream and not at the beginning when we really
wanted it. This is where the second cleverness in this AMS algorithm comes in. As we will see,

1Lecture notes by Deeparnab Chakrabarty. Last modified : 16th April, 2021
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

1



the reservoir sampling always maintains an R which is uniformly at random among the stream seen
so far. What the algorithm does is once R is modified, it wipes out all memory and keeps counting
the number of occurrences of this element R henceforth. If this count is C, then the estimate of the
algorithm is Z = F1(C

k− (C−1)k). Since the choice of this random element i = R is equally likely
among all the fi possibilities, we will see that the expected value of Z precisely evaluates to F1f

k−1
i .

Which is exactly what we wanted above. Details follow.

• Reservoir Sampling. How do we sample a random element from a stream? If we knew the number
of items M = F1 up-front, then it’s easy : we select j ∈ {1, 2, . . . ,M} at random and then just wait
for the jth item to come. But we don’t know M . In particular, we want to have the following data
structure: for every 1 ≤ t ≤ M , we want an Rt where Rt is a uniformly-at-random element among
the t elements seen so far. If you have never seen this before, then it is worth thinking a bit about it as
a nice puzzle.

Here is one way to do it. The first item has to be R1. When the second item arrives, we set R2 to be
this with probability 1/2, and let it remain R1 with probability 1/2. Note that R2 is one of the two
items equally likely. But this idea generalizes. When the tth item arrives, we set Rt to be this item
with probability 1

t , and let Rt = Rt−1 with probability t−1
t . What is the probability Rt = j for some

element j among the first j items. If j is the tth item, then it is clearly 1
t by design. If not, then it is

t−1
t · Pr[Rt−1 = j]. But inductively, Pr[Rt−1 = j] = 1

t−1 . Thus, Pr[Rt = j] = 1
t for all j in the

first t items.

1: procedure RESERVOIR SAMPLING:
2: . For every t, store Rt which is supposed to uniform among the first t elements
3: for update et do:
4: if t = 1 then:
5: Set Rt ← e1 with probability 1.
6: else:
7: Set Rt ← et with probability 1

t , and Rt ← Rt−1 with probability t−1
t .

• The AMS Estimate. The algorithm maintains maintains a counter C which counts the occurrence
of an element e in the stream. Initially, C = 0 and e ← ⊥. It also maintains the reservoir sample
Rt at every update t as describe above. If Rt = Rt−1 (which occurs with probability 1 − 1

t ), then it
checks if the tth element is e. If so, it increments C by 1, and otherwise ignores e. If Rt 6= Rt−1,
that is, Rt is set to the tth element, then e is reset to be this element and the count C is reset to 1.
Note that this resetting of the counter is done even if the tth element is the same as e. The algorithm
also maintains a count of F1 (the total number of elements in the stream). At the end, it returns
Z ← F1 ·

(
Ck − (C − 1)k

)
.

2



1: procedure AMS-FK:
2: Initialize M ← 0, C ← 0 and e← ⊥.
3: for update et do:
4: Increment M ←M + 1.
5: Maintain Rt using RESERVOIR SAMPLING.
6: if Rt is kept the same as Rt−1 then:
7: if et = e then:
8: Increment C ← C + 1

9: else: . Rt is now reset to et
10: Set e← et and C ← 1.
11: return Z ←M ·

(
Ck − Ck−1

)
.

Theorem 1. The estimate Z returned by AMS-FK is an unbiased estimate of Fk. Furthermore,
Var[Z]

Exp2[Z]
≤ k · n1− 1

k .

– Note that M = F1, the sum of frequencies of all elements. Consider the element RM , and
observe a couple of things. First, for any i ∈ [n], the probability Pr[RM = i] = fi

F1
since the

reservoir sample returns a random element in the stream, and there are fi occurrences of i. Now,
let t be the index in the stream such that RM = t; that is, after position t, the random variable
was not modified. The second observation is that conditioned on RM = i, the value of t is
uniformly distributed among the fi choices of i. Again, this is because t is uniformly distributed
in M , and thus uniformly distributed among any subset as well, if conditioned to be there.
What this means is conditioned on RM = i, the value of C at the end is equally likely to be
{1, 2, . . . , fi}. And therefore,

Exp[Z] = M ·
n∑

i=1

Pr[RM = i] ·
fi∑
t=1

Pr[C = t] ·
(
tk − (t− 1)k

)
= F1 ·

n∑
i=1

fi
F1
·

fi∑
t=1

1

fi
·
(
tk − (t− 1)k

)
=

n∑
i=1

fi∑
t=1

(
tk − (t− 1)k

)
︸ ︷︷ ︸

telescopes to fki

= Fk

– How about the variance? Well, we see

Exp[Z2] = M2 ·
n∑

i=1

Pr[RM = i] ·
fi∑
t=1

Pr[C = t] ·
(
tk − (t− 1)k

)2
= F1

n∑
i=1

fi∑
t=1

(
tk − (t− 1)k

)2
≤︸︷︷︸

Fact 2

kF1F2k−1 ≤︸︷︷︸
Fact 1

kn1− 1
k

where we use another analytic massaging encapsulated below

3



Fact 2.
∑n

i=1

∑fi
t=1

(
tk − (t− 1)k

)2 ≤ kF2k−1

Proof. We will use the following fact: tk − (t − 1)k ≤ ktk−1 for any t ≥ 1. This can be seen
using elementary calculus (the mean value theorem). Therefore,

n∑
i=1

fi∑
t=1

(
tk − (t− 1)k

)2
≤

n∑
i=1

fi∑
t=1

ktk−1 ·
(
tk − (t− 1)k

)
≤k

n∑
i=1

fk−1
i

fi∑
t=1

(
tk − (t− 1)k

)
︸ ︷︷ ︸

telescopes to fki

= k
n∑

i=1

fk−1
i · fki = kF2k−1

– We end with a proof of Fact 1, that is, we wish to prove F1F2k−1 ≤ n1− 1
k · (Fk)

2.
We first note that if we denote L := maxi fi, then F2k−1 ≤ Lk−1Fk. Thus, it suffices to prove
that F1 · Lk−1 ≤ n

k−1
k Fk.

To see this, first note that Lk−1 ≤ (Fk)
k−1
k ; the RHS is a sum of the kth powers of a bunch

of things taken to the (k − 1)/kth root, while the RHS is the (k − 1)/kth root of only a single

elements kth power. Thus, we just need to prove that F1 ≤ n
k−1
k · F

1
k
k .

The last follows from the convexity of the function x 7→ xk. Jensen’s inequality implies(
1

n

n∑
i=1

fi

)k

≤ 1

n
·

n∑
i=1

fki ⇒ F k
1 ≤ nk−1 · Fk

which implies what we want by taking the kth root.

4


