
Streaming IV : Counting Distinct Elements1

• In the next few lectures, we will concern ourselves with distinct elements in a stream. For today, we
will consider insertion only streams, and each update is of the form (i, c) with c = 1. The object is to
estimate the number of distinct elements, or put in the jargon of frequencies, the number of elements
with fi > 0. This quantity is also called the 0th-frequency moment F0 =

∑n
i=1 f

0
i with the convention

that 00 = 0. Note that, then, the sum contains a one for every element with fi > 0.

The algorithm we will present today may as well be called the first modern2 streaming algorithm. It is
due3 to Phillipe Flajolet and Nigel Martin from 1985. A slightly modified version of their algorithm
and a different analysis was presented in the famous Alon-Matias-Szegedy paper. Our presentation
will (very slightly) differ from theirs, because I will present it in a way that I find it most convenient
to think about what’s going on.

• The Main Idea and Intuition. Throughout, we use d to denote the number of distinct elements, and let
` be the non-negative integer such that 2` ≤ d < 2`+1, that is, ` = blg dc. We will use L := dlg ne,
and for now, assume we know n, and therefore, know L.

Think of maintaining L different hash functions h1, . . . , hL : [n]→ {0, 1} such that for any 1 ≤ i ≤
L, we have the property that for any e ∈ [n], Pr[hi(e)] =

1
2i

. Again, for the sake of intuition, for now
assume hi’s are truly random, that is, for any 1 ≤ i ≤ L, the random variables {hi(e) : e ∈ [n]} are
mutually independent.

The main observation is this : if there are d distinct elements, and each element was being hashed to
1 with probability 1/d, then with constant probability one of them will hash to 1. And if the elements
were being hashed to 1 with probability 1

2jd
, then the probability of hashing to 1 is ≈ O(1)

2j
, and

thus, we don’t expect any 1s from these “higher” hash functions. This leads to the main idea of the
algorithm : keep L counters, setting the ith counter if any element which arrives hashes hi to 1. At the
end, return the (reciprocal of the probability associated) largest counter which is 1. Let us precisely
state this algorithm, and then later on we will see how to improve its implementation.

1: procedure BASIC-PC:
2: Choose L = dlg ne hash functions h1, . . . , hL. . hi(e) = 1 w.p. 1

2i , for all e ∈ [n].
3: Maintain L counter-“bits” C[1 : L], initialized to 0.
4: for when element e arrives do:
5: If hi(e) = 1, set C[i] to 1, for all 1 ≤ i ≤ L.
6: Let Z be the largest index i with C[i] = 1.
7: return est← 2Z . . The probability associated with a counter i is 1

2i .

• Analysis.
1Lecture notes by Deeparnab Chakrabarty. Last modified : 19th April, 2021

These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

2Yes, for this streaming module, we seem to be have gone reverse chronological, but this was not my intention at all.
3Probabilistic Counting Algorithms for Data Base Applications. Philippe Flajolet and G. Nigel Martin. Journal of Computer

and System Sciences, vol 31(2), 1985, pp. 182-209

1

Theorem 1 (Basic PC Analysis.). With probability ≥ 3
5 , the estimate returned by BASIC-PC

satisfies d
4 ≤ est ≤ 8d.

Proof. For any fixed 1 ≤ i ≤ L, what is the probability C[i] = 1? It is 1 if any of the d distinct
elements e satisfies hi(e) = 1. Since we have assumed independence, we get

Pr [C[i] = 0] = Pr

 ∧
e∈[n]

hi(e) = 0

 =

(
1− 1

2i

)d

Therefore, the probability

Pr[C[`− 1] = 0] =

(
1− 1

2`−1

)d

≤︸︷︷︸
since (1−t)≤e−t for any t

e
− d

2`−1 ≤︸︷︷︸
since d≥2`

1

e2
(1)

On the other hand, for any j, the probability

Pr[C[j] = 1] = 1−
(
1− 1

2j

)d

≤︸︷︷︸
since (1−t)d≥1−dt for t ≥ 0

d

2j

giving us,

Pr[∃j ≥ `+ 4 : C[j] = 1] ≤︸︷︷︸
union bound

∑
j≥`+4

d

2j
≤︸︷︷︸

geometric series

d

2`+3
≤︸︷︷︸

since d≤2`+1

1

4
(2)

Therefore, by applying the union bound on (1) and (2), we get that with probability 1−
(

1
e2

+ 1
4

)
≥ 3

5 ,
we get that the following events occur

{C[`−1] = 1 andC[j] = 0 for j ≥ `+ 4} ⇒ {`−1 ≤ Z andZ ≤ `+3} ⇒︸︷︷︸
using 2`≤d≤2`+1

{d
4
≤ est ≤ 8d}

Remark: If you are “worried” about 1/4 in the left inequality and 8 in the right inequality, then
simply multiply your estimate by 1/

√
2 to get a more symmetric answer. Whatever you do, this is

a constant factor approximation, and indeed, can’t be any better than 2 since we return a power
of 2. The “error probability” can be reduced by the “median trick” : takeO(ln(1/δ)) copies and
take the median. You will be guaranteed the answer in the desired range with 1 − δ probability.
What’s the best constant you can get?

• The Better Implementation a la Flajolet-Martin. Apart from the fact that we used completely random
functions, the above analysis was also wasteful in maintaining the L counters and L different hash-
functions. The observation to save space is notice that the above algorithm can be implemented by
using one hash function and one counter. This is usually the way this algorithm is presented, but I
feel there is merit in teasing these two ideas out.

2

Note that the hi’s we needed have a very specific structure. And indeed, you probably can see how
a single hash function gives this. Consider a hash function h : [n] → [n], and consider the binary
expansion of h(e). Assuming, for the moment that n is a power of 2, we see that h(e) is even with
probability 1, divisible by 4 with probability 1/4, and so on. In particular, if we define hi(e) to be 1
if the “last” i bits of h(e) are 0, then we get the behavior we needed from the L = lg n different hash
functions. With a single one!

The second observation is that although we evaluate hi(e) for all 1 ≤ i ≤ L in the BASIC-PC
algorithm, all we really care in the end is the largest-indexed counter which sets to 1. Since nothing is
deleted, once the largest index is set to some r, why even bother about the smaller indexed counters?
This allows us to get away by maintaining only one counter. With this, we can present the way the
probabilistic counting algorithm ala Flajolet-Martin is usually presented.

1: procedure FLAJOLET-MARTIN:
2: Choose h : [n]→ [2L] from a strongly universal hash familya.. L = dlg ne.
3: . Flajolet-Martin assume the existence of random hash function. The algorithm with

pairwise-independent hash functions was first considered by Alon-Matias-Szegedy.
4: Maintain a single counter Z initialized to 0.
5: for when element e arrives do:
6: r(e)← number of trailing 0s in the binary representation of h(e).
7: if r(e) ≥ Z then:
8: Z ← r(e).
9: return est← 2Z .

aWe need : for any h(e) is uniformly distributed among [2L], and h(e) and h(e′) for any two e 6= e′ are
independent. This is called pairwise independence.

• Analysis using pairwise independence. As mentioned above, if h : [n] → [2L] were a truly random
function, that is, if the random variables indicating the number of trailing zeros of h(e) and h(e′) and
h(e′′) for different elements were mutually independent, then the previous analysis would have gone
through. We now show how just pairwise independence is sufficient. In particular, we show

Theorem 2 (Basic PC Analysis.). With probability > 1
2 , the estimate returned by FLAJOLET-

MARTIN satisfies d
8 ≤ est ≤ 4d.

– For any integer r, let Xe,r be the indicator variable that h(e) has ≥ r trailing zeros. Let Yr =∑
e∈DXe,r denote the sum of Xe,r over the distinct elements of the stream. We have used D to

denote this set, with |D| = d. The final value of the counter Z is related to Yr as follows:

{Yr ≥ 1} ⇔ {Z ≥ r} and {Yr = 0} ⇔ {Z ≤ r − 1} (3)

If Yr ≥ 1, then some element e will have r(e) ≥ r implying Z ≥ r. On the other hand, Yr = 0
implies all elements e have r(e) ≤ r − 1 implying Z ≤ r − 1.

– What is the probability Xe,r = 1? That is, the probability that 2r divides e. Since h is
drawn from the strongly UHF, we get that h(e) is uniformly distributed in [2L]. This implies,

3

Exp[Xe,r] =
1
2r , which in turn implies

For any 1 ≤ r ≤ L, Exp[Yr] =
d

2r
(4)

Remark: Therefore, we get that for any 1 ≤ r ≤ L, the random variable 2rYr is an
unbiased estimate of d.

– Next, we consider the variance of Yr. To do so, we notice that Yr is the sum of pairwise inde-
pendent random variables. This pairwise independence is due to the choice of the hash family.
Therefore, the variance of Yr is the sum of the variances of Xe,r. But the variance of Xe,r is
simply 1

2r ·
(
1− 1

2r

)
giving us

For any 1 ≤ r ≤ L, Var[Yr] =
d

2r
·
(
1− 1

2r

)
(5)

– The rest of the work is done by the two Russians: Chebyshev and Markov. Recall, ` is such that
2` ≤ d < 2`+1. Now, by (3), we have Pr[Z ≤ ` − 3] = Pr[Y`−2 = 0], which in turn can be
bounded as follows

Pr[Z ≤ `− 3] = Pr[Y`−2 = 0] ≤ Pr
[∣∣∣Y`−2 −Exp[Y`−2]

∣∣∣ ≥ Exp[Y`−2]
]

≤︸︷︷︸
Chebyshev

Var[Y`−2]

Exp2[Y`−2]
=

(
1− 1

2`−2

)
· 1

d/2`−2
<︸︷︷︸

since d≥2`

1

4

Similarly, Pr[Z ≥ `+ 3] = Pr[Y`+3 ≥ 1]. By Markov’s inequality, we get

Pr[Z ≥ `+ 3] = Pr[Y`+3 ≥ 1] ≤ Exp[Y`+3] =
d

2`+3
<︸︷︷︸

since d<2`+1

1

4

Therefore, with probability > 1
2 , we get that

{`− 2 ≤ Z ≤ `+ 2} ⇒ {d
8
≤ 2`−2 ≤ 2Z ≤ 2`+2 ≤ 4d}

Exercise: Tighten the above analysis. In particular, find the best constant c such that you
can estimate something in [d/c, cd] with probability≥ 1−δ. Note that for the median trick,
all you need is that the probability you are an underestimate is < 1/2 and the probability
you are an overestimate is < 1/2.

• Space Usage of FLAJOLET-MARTIN. How much space does the algorithm take? Instead of L hash
functions, there is a single hash-function which takes O(log n) bits, or O(1) words. The estimate Z,
on the other hand, takes only lg lgn+O(1) bits. This is pretty impressive. The estimate of the number
of distinct elements can be summarized (upto O(1) factor) in ≈ lg lgn bits. At some level, one can
think of this as Z maintaining the “number of significant bits” required in expressing the number of
distinct items, and this number itself is lg n in size, and thus takes lg lgn bits to write down.

4

Remark: It is worth staring at the FLAJOLET-MARTIN algorithm again as a programmer. One
would not choose a hash function, but perhaps just assume the elements are first hashed into say
64-bit strings before they come to you. Thus, you actually obtain h(e) instead of e. Now, one can
then do what are called “bit-whacking” operations to quickly evaluate 2r(e) and compare with
the current 2Z: it involves taking complements, bit-wise ORs and bit-wise ANDs. In particular,
they can be done insanely fast. And indeed, this algorithm is extremely practical. Much more so
than picking the h from a pairwise independent hash-family.

The analysis given above is the one given in the Alon-Matias-Szegedy paper which uses pairwise
independent hash functions. Flajolet and Martin, in their original paper actually prove very pow-
erful statements using techniques which are beyond the scope of this course (I don’t understand
them yet). In particular, the paper shows that if one assume h is a truly random function (as an
axiom, say), then although est is not an unbiased estimate, est/φ is very close to one, where φ is
some irrational number≈ 0.77351. Furthermore, the variance is also small, that is, the variance
divided by mean square is also a small constant. Indeed, they prove that just taking the average
of a bunch of trials gives a very good approximation to d, the number of distinct elements. For
more details, I will refer you to the paper, with the warning that it is not an elementary one to
read.

The Flajolet-Martin algorithms, and its two generalizations (both of which included Flajolet as a
co-author) LOGLOG and HYPERLOGLOG are widely used in practice. Although the algorithms
are simple to understand, their analyses are even more involved. In this offering of the course, I
have made the choice of describing algorithms whose analyses I personally understand, and will
not present the generalizations mentioned above. However, you should have all the tools needed
to understand what these algorithms do. Indeed, just figuring what those algorithms are doing
and writing about them in the parlance we have been using, could be a nice reading/writing
project.

5

